
Blocked Bloom Filters with Choices

Jens Zentgraf, Johanna Elena Schmitz and Sven Rahmann
Algorithmic Bioinformatics, Saarland University

Bloom Filter

2

■ Probabilistic set membership
data structure

■ A set K of n=|K| elements
■ k hash functions

➢ false positive rate of 2-k

■ Bit array of size m bits
➢ m = nk / ln(2)

Bloom Filter

3

■ Probabilistic set membership
data structure

■ A set K of n=|K| elements
■ k hash functions

➢ false positive rate of 2-k

■ Bit array of size m bits
➢ m = nk / ln(2)

Bloom Filter

4

■ Probabilistic set membership
data structure

■ A set K of n=|K| elements
■ k hash functions

➢ false positive rate of 2-k

■ Bit array of size m bits
➢ m = nk / ln(2)

■ Insert:
➢ Compute k positions
➢ Set all positions to 1

■ Lookup:
➢ Compute k positions
➢ All positions 1 ➡ contained

Bloom Filter

5

Advantages:

■ Simple
■ Adjustable FPR

(number of hash functions)
■ Online insertion

Disadvantages:

■ High overhead (≈1.44)
■ Slow

➢ k cache misses

Bloom Filter

6

Advantages:

■ Simple
■ Adjustable FPR

(number of hash functions)
■ Online insertion

Disadvantages:

■ High overhead (≈1.44)
■ Slow

➢ k cache misses

Blocked Bloom Filter

■ Split the bit array into
B blocks of size M

■ M is typically a cache line
(512 bits)

■ 1 additional hash function
to pick a block

■ Insert:
➢ Compute 1 block
➢ Compute k positions

inside a block
➢ Set all positions to 1

7

Blocked Bloom Filter

■ Split the bit array into
B blocks of size M

■ M is typically a cache line
(512 bits)

■ 1 additional hash function
to pick a block

■ Insert:
➢ Compute 1 block
➢ Compute k positions

inside a block
➢ Set all positions to 1

8

Blocked Bloom Filter

9

Advantages:

■ One cache miss
■ Faster than the

normal Bloom filter

Disadvantages:

■ One additional hash function
to select a block

■ Blocks are not filled evenly.
➢ Some blocks are more filled,

some are less
➢ Higher FPR

■ Increase size to counter
increased FPR

Blocked Bloom Filter

10

Advantages:

■ One cache miss
■ Faster than the

normal Bloom filter

■ Goal:
➢ Reduce FPR and

keep filter size
➢ Reduce overhead and

keep FPR

Disadvantages:

■ One additional hash function
to select a block

■ Blocks are not filled evenly.
➢ Some blocks are more filled,

some are less
➢ Higher FPR

■ Increase size to counter
increased FPR

Random vs. Distinct hash positions

11

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Random vs. Distinct hash positions

12

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Random vs. Distinct hash positions

13

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Random vs. Distinct hash positions

14

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Random vs. Distinct hash positions

15

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Random vs. Distinct hash positions

16

■ One or multiple hash functions can point to the same bit positions
■ We only get k' ≤ k different positions
■ Reduces the FPR to 2-k'

Blocked Bloom filters with choices

■ Instead of computing one block,
we can choose one block out of
c possible blocks.

17

■ Keep local FPR low
in each block
➢ Pick the block

with the lower FPR
■ Always check c blocks.

➢ Increases FPR
(local FPR of each block)

Blocked Bloom filters with choices

■ Instead of computing one block,
we can choose one block out of
c possible blocks.

18

■ Keep local FPR low
in each block
➢ Pick the block

with the lower FPR
■ Always check c blocks.

➢ Increases FPR
(local FPR of each block)

Blocked Bloom filters with choices

■ Instead of computing one block,
we can choose one block out of
c possible blocks.

19

■ Keep local FPR low
in each block
➢ Pick the block

with the lower FPR
■ Always check c blocks.

➢ Increases FPR
(local FPR of each block)

Blocked Bloom filters with choices

■ Instead of computing one block,
we can choose one block out of
c.

■ Keep local FPR low
in each block
➢ Pick the block with the lower

FPR
■ Always check c blocks.

➢ Increases FPR (local FPR of
each block)

20

Cost functions

The cost functions are based on two
parameters:

■ j number of set bits
after insertion

■ a number of new set bits
after insertion

Goal:

■ Reduce local FPR in blocks
■ Reuse bits if possible

21

Cost functions

The cost functions are based on two
parameters:

■ j number of set bits
after insertion

■ a number of new set bits
after insertion

Goal:

■ Reduce local FPR in blocks
■ Reuse bits if possible

■ k = 10
■ 2-k = 2-10 ≈ 0.0009765625

22

k=10 random distinct

choices set bits
(j)

new bits
(a)

set bits
(j)

new bits
(a)

2 0,001634 0,008066 0,001587 0,008201

3 0,001957 0,034652 0,001893 0,035655

Cost functions

The cost functions are based on two
parameters:

■ j number of set bits
after insertion

■ a number of new set bits
after insertion

Goal:

■ Reduce local FPR in blocks
■ Reuse bits if possible

Three different cost functions:

■ Mixed cost function
■ Lookahead cost function
■ Exponential cost function

23

Mixed Cost function

■ Keep number of set bits
in a block low

■ Reuse bits if possible

24

Mixed Cost function

■ Keep number of set bits
in a block low

■ Reuse bits if possible

■ costMIX
σ(j, a) := σk · (j/256)k + a

25

Mixed Cost function

■ Keep number of set bits
in a block low

■ Reuse bits if possible

■ costMIX
σ(j, a) := σk · (j/256)k + a

26

Mixed Cost function

■ Keep number of set bits
in a block low

■ Reuse bits if possible

■ costMIX
σ(j, a) := σk · (j/256)k + a

27

Lookahead Cost function

■ Still a lot of overfull blocks
■ Penalize already less full blocks

stronger

costLA
μ (j, a) := costMIX

1 (j + μk, a)
 = k · ((j + μk)/256)k + a

28

Lookahead Cost function

■ Still a lot of overfull blocks
■ Penalize already less full blocks

stronger

costLA
μ (j, a) := costMIX

1 (j + μk, a)
 = k · ((j + μk)/256)k + a

29

Lookahead Cost function

■ Still a lot of overfull blocks
■ Penalize already less full blocks

stronger

costLA
μ (j, a) := costMIX

1 (j + μk, a)
 = k · ((j + μk)/256)k + a

30

Exponential Cost function

■ Reduce the risk of overfilling a
bucket further

costEXP
β (j, a) := β(j/128) + a/k

31

Exponential Cost function

■ Reduce the risk of overfilling a
bucket further

costEXP
β (j, a) := β(j/128) + a/k

32

Exponential Cost function

■ Reduce the risk of overfilling a
bucket further

costEXP
β (j, a) := β(j/128) + a/k

33

Linear Cost function

■ Perhaps a linear function
works best?

costLINEAR
m(j, a) := mj + a

34

Linear Cost function

■ Perhaps a linear function
works best?

costLINEAR
m(j, a) := mj + a

35

Linear Cost function

■ Perhaps a linear function
works best?

costLINEAR
m(j, a) := mj + a

36

Overhead (Exp. Cost function)

37

Running times (Exp. Cost function)

38

Summary

39

Blocked Bloom filters with choices:

■ Same space overhead as
normal Bloom filters

■ Better FPR than
Blocked Bloom filters.

■ Better FPR than normal Bloom
filters using exponential cost
function.

