

Jens Zentgraf, Johanna Elena Schmitz and Sven Rahmann Algorithmic Bioinformatics, Saarland University

- Probabilistic set membership data structure
- A set K of n=|K| elements
- k hash functions
 - \rightarrow false positive rate of 2- k
- Bit array of size *m* bits
 - \rightarrow m = nk / ln(2)

- Probabilistic set membership data structure
- A set K of n=|K| elements
- k hash functions
 - \rightarrow false positive rate of 2- k
- Bit array of size m bits
 - \rightarrow m = nk / ln(2)

- Probabilistic set membership data structure
- A set K of n=|K| elements
- k hash functions
 - false positive rate of 2-k
- Bit array of size *m* bits
 - \rightarrow m = nk / ln(2)

- Insert:
 - ➤ Compute *k* positions
 - > Set all positions to 1
- Lookup:
 - Compute k positions
 - ➤ All positions 1 → contained

Advantages:

- Simple
- Adjustable FPR (number of hash functions)
- Online insertion

Disadvantages:

- High overhead (≈1.44)
- Slow
 - \triangleright k cache misses

Advantages:

- Simple
- Adjustable FPR (number of hash functions)
- Online insertion

Disadvantages:

- High overhead (≈1.44)
- Slow
 - \triangleright k cache misses

- Split the bit array intoB blocks of size M
- M is typically a cache line (512 bits)
- 1 additional hash function to pick a block

■ Insert:

- Compute 1 block
- Compute k positions inside a block
- Set all positions to 1

- Split the bit array intoB blocks of size M
- M is typically a cache line (512 bits)
- 1 additional hash function to pick a block

Insert key x h₁(x) M blocks

Insert:

- Compute 1 block
- Compute k positions inside a block
- Set all positions to 1

Advantages:

- One cache miss
- Faster than the normal Bloom filter

Disadvantages:

- One additional hash function to select a block
- Blocks are not filled evenly.
 - Some blocks are more filled, some are less
 - > Higher FPR
- Increase size to counter increased FPR

Advantages:

- One cache miss
- Faster than the normal Bloom filter

■ Goal:

- Reduce FPR and keep filter size
- Reduce overhead and keep FPR

Disadvantages:

- One additional hash function to select a block
- Blocks are not filled evenly.
 - Some blocks are more filled, some are less
 - ➤ Higher FPR
- Increase size to counter increased FPR

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- Reduces the FPR to 2^{-k'}

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- Reduces the FPR to 2^{-k'}

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- Reduces the FPR to 2^{-k'}

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- \blacksquare Reduces the FPR to $2^{-k'}$

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- \blacksquare Reduces the FPR to $2^{-k'}$

- One or multiple hash functions can point to the same bit positions
- We only get $k' \le k$ different positions
- Reduces the FPR to 2^{-k'}

Instead of computing one block, we can choose one block out of c possible blocks.

- Keep local FPR low in each block
 - Pick the block with the lower FPR
- Always check c blocks.
 - Increases FPR (local FPR of each block)

Instead of computing one block, we can choose one block out of c possible blocks.

- Pick the block with the lower FPR
- Always check c blocks.
 - Increases FPR (local FPR of each block)

B Blocked Bloom Filter with Choices

Instead of computing one block, we can choose one block out of c possible blocks.

- Keep local FPR low in each block
 - Pick the block with the lower FPR
- Always check c blocks.
 - Increases FPR (local FPR of each block)

- Instead of computing one block, we can choose one block out of c.
- Keep local FPR low in each block
 - Pick the block with the lower FPR
- Always check c blocks.
 - Increases FPR (local FPR of each block)

Cost functions

The cost functions are based on two parameters:

- j number of set bitsafter insertion
- a number of new set bits after insertion

Goal:

- Reduce local FPR in blocks
- Reuse bits if possible

Cost functions

The cost functions are based on two parameters:

- j number of set bitsafter insertion
- a number of new set bits after insertion

Goal:

- Reduce local FPR in blocks
- Reuse bits if possible

$$k = 10$$

$$2^{-k} = 2^{-10} \approx 0.0009765625$$

<i>k</i> =10	random		distinct	
choices	set bits	new bits (a)	set bits	new bits (a)
2	0,001634	0,008066	0,001587	0,008201
3	0,001957	0,034652	0,001893	0,035655

Cost functions

The cost functions are based on two parameters:

- j number of set bitsafter insertion
- a number of new set bits
 after insertion

Goal:

- Reduce local FPR in blocks
- Reuse bits if possible

Three different cost functions:

- Mixed cost function
- Lookahead cost function
- Exponential cost function

- Keep number of set bits in a block low
- Reuse bits if possible

- Keep number of set bits in a block low
- Reuse bits if possible

- Keep number of set bits in a block low
- Reuse bits if possible

- Keep number of set bits in a block low
- Reuse bits if possible

Lookahead Cost function

- Still a lot of overfull blocks
- Penalize already less full blocks stronger

$$cost^{LA}_{\mu}(j, a) := cost^{MIX}_{1}(j + \mu k, a)$$

$$= k \cdot ((j + \mu k)/256)^{k} + a$$

Lookahead Cost function

- Still a lot of overfull blocks
- Penalize already less full blocks stronger

$$cost^{LA}_{\mu}(j, a) := cost^{MIX}_{1}(j + \mu k, a)$$

$$= k \cdot ((j + \mu k)/256)^{k} + a$$

Lookahead Cost function

- Still a lot of overfull blocks
- Penalize already less full blocks stronger

$$cost^{LA}_{\mu}(j, a) := cost^{MIX}_{1}(j + \mu k, a)$$

$$= k \cdot ((j + \mu k)/256)^{k} + a$$

Exponential Cost function

 Reduce the risk of overfilling a bucket further

$$cost^{EXP}_{\beta}(j, a) := \beta^{(j/128)} + a/k$$

Exponential Cost function

 Reduce the risk of overfilling a bucket further

$$cost^{EXP}_{\beta}(j, a) := \beta^{(j/128)} + a/k$$

Exponential Cost function

 Reduce the risk of overfilling a bucket further

$$cost^{EXP}_{\beta}(j, a) := \beta^{(j/128)} + a/k$$

Linear Cost function

Perhaps a linear function works best?

$$cost^{LINEAR}_{m}(j, a) := mj + a$$

Linear Cost function

Perhaps a linear function works best?

$$cost^{LINEAR}_{m}(j, a) := mj + a$$

Linear Cost function

Perhaps a linear function works best?

$$cost^{LINEAR}_{m}(j, a) := mj + a$$

Overhead (Exp. Cost function)

Running times (Exp. Cost function)

Summary

Blocked Bloom filters with choices:

- Same space overhead as normal Bloom filters
- Better FPR than
 Blocked Bloom filters.
- Better FPR than normal Bloom filters using exponential cost function.

