

CLEANIFIER: Removing human DNA contamination with a pangenomic gapped *k*-mer index

<u>Jens Zentgraf,</u> Johanna Elena Schmitz, Sven Rahmann Saarland University

GCB 2025

Privacy

■ Human data cannot be made public

Privacy

■ Human data cannot be made public

Downstream analysis

Reduce problems in binning and assembly

Definitions

- *k*-mers
 - Substrings of length k

CGATCGACTAGCATCGAACGTACG . . .

k-mer

rc

canonical

Definitions

- k-mers
 - Substrings of length k

CGATCGACTAGCATCGAACGTACG

k-mer

rc

canonical

CGATC

GATCG

ATCGA

TCGAC

CGACT

Definitions

- k-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - \blacksquare A \leftrightarrow T, C \leftrightarrow G

CGATCGACTAGCATCGAACGTACG

k-mer rc

canonical

CGATC

GATCG

ATCGA

TCGAC

CGACT

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - \blacksquare A \leftrightarrow T, C \leftrightarrow G

CGATCGACTAGCATCGAACGTACG . . .

k-mer rc canonical
CGATC GATCG
GATCG CGATC
ATCGA TCGAT
TCGAC GTCGA
CGACT AGTCG

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - lacksquare A \leftrightarrow T, C \leftrightarrow G
- Canonical k-mer
 - Maximum of k-mer and rc(k-mer)

CGATCGACTAGCATCGAACGTACG . . .

k-mer rc canonical
CGATC GATCG
GATCG CGATC
ATCGA TCGAT
TCGAC GTCGA
CGACT AGTCG

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - \blacksquare A \leftrightarrow T, C \leftrightarrow G
- Canonical *k*-mer
 - Maximum of k-mer and rc(k-mer)

CGATCGACTAGCATCGAACGTACG .			
----------------------------	--	--	--

$k ext{-mer}$	rc	canonical
CGATC	GATCG	GATCG
GATCG	CGATC	GATCG
ATCGA	TCGAT	TCGAT
TCGAC	GTCGA	TCGAC
CGACT	AGTCG	CGACT

CGATCGACTAGCATCGAACGTACG

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - \blacksquare A \leftrightarrow T, C \leftrightarrow G
- Canonical k-mer
 - Maximum of k-mer and rc(k-mer)
- Gapped *k*-mers (spaced seeds)
 - k significant positions (#)
 - Window size *w*
 - w-k insignificant positions (_)
 - **##_#_##**

k-mer	rc	canonical
CGATC	GATCG	GATCG
GATCG	CGATC	GATCG
ATCGA	TCGAT	TCGAT
TCGAC	GTCGA	TCGAC
CGACT	AGTCG	CGACT

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - lacksquare A \leftrightarrow T, C \leftrightarrow G
- Canonical k-mer
 - Maximum of k-mer and rc(k-mer)
- Gapped *k*-mers (spaced seeds)
 - k significant positions (#)
 - Window size *w*
 - w-k insignificant positions (_)
 - ##_#_##

CGATCGACTAGCATCGAACGTACG . . .

##_#_##

CG T GA

GA C AC

AT G CT

TC A TA

CG C AG

. .

Definitions

- *k*-mers
 - Substrings of length k
- Reverse complements (rc)
 - Reverse order
 - lacksquare A \leftrightarrow T, C \leftrightarrow G
- Canonical k-mer
 - Maximum of k-mer and rc(k-mer)
- Gapped *k*-mers (spaced seeds)
 - k significant positions (#)
 - Window size *w*
 - w-k insignificant positions (_)
 - **##_#_##**

CGATCGACTAGCATCGAACGTACG . . .

##_#_##

CG T GA

GA C AC

AT G CT

TC A TA

CG C AG

 Design of Worst-Case-Optimal Spaced Seeds at WABI 2025

Comparison

Hostile

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

Comparison

■ Hostile

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

■ Kraken2

- *k*-mer based
- Metagenomic classification
- Default database (very large)

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

■ Kraken2

- *k*-mer based
- Metagenomic classification
- Default database (very large)

■ NoHuman

- Kraken2 wrapper
- Custom Human database (smaller)

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

Kraken2

- *k*-mer based
- Metagenomic classification
- Default database (very large)

■ NoHuman

- Kraken2 wrapper
- Custom Human database (smaller)

HRRT

- k-mer based
- Min-hash based (Jaccard Similarity)
- Include all k-mers from human derived eukaryotic species
- Exclude all k-mers in non-eukaryotic species

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

■ Kraken2

- *k*-mer based
- Metagenomic classification
- Default database (very large)

NoHuman

- Kraken2 wrapper
- Custom Human database (smaller)

HRRT

- k-mer based
- Min-hash based (Jaccard Similarity)
- Include all k-mers from human derived eukaryotic species
- Exclude all k-mers in non-eukaryotic species

Deacon

- Minimizer based
- Pangenome approach

- Alignment based
- Human reference
- BOWTIE2 or MINIMAP2

Kraken2

- *k*-mer based
- Metagenomic classification
- Default database (very large)

NoHuman

- Kraken2 wrapper
- Custom Human database (smaller)

HRRT

- k-mer based
- Min-hash based (Jaccard Similarity)
- Include all k-mers from human derived eukaryotic species
- Exclude all k-mers in non-eukaryotic species

Deacon

- Minimizer based
- Pangenome approach

■ CLEANIFIER

- Gapped *k*-mer based
- Pangenome approach

######_################ k = 29, w = 33

######_################# k = 29, w = 33

Human references

■ T2T reference

######_################ k = 29, w = 33

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - lacksquare Allele frequency of at least 1%

################################ k = 29, w = 33

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - Allele frequency of at least 1%
- Human Pangenome Refence Consotrium
 - 47 assemblies

############################## k = 29, w = 33

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - Allele frequency of at least 1%
- Human Pangenome Refence Consotrium
 - 47 assemblies
- IPD-IMGT/HLA database
 - HLA is highly variable

################################ k = 29, w = 33

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - Allele frequency of at least 1%
- Human Pangenome Refence Consotrium
 - 47 assemblies
- IPD-IMGT/HLA database
 - HLA is highly variable
- cDNA transcripts
 - Deal with RNA

########################### k = 29, w = 33

Human references

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - Allele frequency of at least 1%
- Human Pangenome Refence Consotrium
 - 47 assemblies
- IPD-IMGT/HLA database
 - HLA is highly variable
- cDNA transcripts
 - Deal with RNA

- 1 Bucketed Cuckoo hash table
 - Exact data structure
 - Stores the *k*-mers
 - Size 13.85 GB

######_######## k = 29, w = 33

Human references

- T2T reference
- 1000 Genome Project
 - Extract all variants (Substitution, Insertion and Deletion)
 - Allele frequency of at least 1%
- Human Pangenome Refence Consotrium
 - 47 assemblies
- IPD-IMGT/HLA database
 - HLA is highly variable
- cDNA transcripts
 - Deal with RNA

- 1 Bucketed Cuckoo hash table
 - Exact data structure
 - Stores the *k*-mers
 - Size 13.85 GB
- 2 Windowed Cuckoo filter
 - Probabilistic set membership data structure
 - Store a fingerprint (of p bits) instead of the k-mer
 - False positive rate of $2^{-p} = 2^{-14}$
 - Size 6.9 GB

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2. $\ell=4$ fill rate of ≈ 0.9989

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- lacksquare Window size of ℓ
- High fill rates possible
 - d=2, $\ell=4$ fill rate of ≈ 0.9989

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2. $\ell=4$ fill rate of ≈ 0.9989

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2. $\ell=4$ fill rate of ≈ 0.9989

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2. $\ell=4$ fill rate of ≈ 0.9989

Windowed Cuckoo Filter

Data structure

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2, $\ell=4$ fill rate of ≈ 0.9989

Data structure

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2, $\ell=4$ fill rate of ≈ 0.9989

Data structure

- Probabilistic set membership data structure
- Store a fingerprint (of p bits) instead of the k-mer
- False positive rate of 2^{-p}
- d hash functions
- Window size of ℓ
- High fill rates possible
 - d=2. $\ell=4$ fill rate of ≈ 0.9989

Smaller and More Flexible Cuckoo Filters at ALENEX 2026

human pangenomeHLA variants

UNIVERSITÄT DES SAARLANDES

- Query all gapped k-mers
- All k bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

- Query all gapped k-mers
- All k bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
##_#_##
CGATCGACTAGCATCGAACGTACG
```


- Query all gapped k-mers
- All k bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
## # ##
CGATCGACTAGCATCGAACGTACG . .
CG T GA AG A CG
 GA C AC GC T GA
  AT G CT CA C AA
   TC A TA AT G AC
    CG C AG TC A CG
     GAT GC CG A GT
      AC A CA GA C TA
      CT G AT AA G AC
        TA C TC AC T CG
```


- Query all gapped k-mers
- All k bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
## # ##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AG A CG
GA C AC GC T GA
  AT G CT CA C AA
  TC A TA AT G AC
    CG C AG TC A CG
    GA T GC CG A GT
      AC A CA GA C TA
      CT G AT AA G AC
        TA C TC AC T CG
```


- Query all gapped k-mers
- All k bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
## # ##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AG A CG
 GA C AC GC T GA
  AT G CT CA C AA
   TC A TA AT G AC
    CG C AG TC A CG
     GA T GC CG A GT
      AC A CA GA C TA
       CT G AT AA G AC
        TA C TC AC T CG
```


- Query every $\lfloor w/2 \rfloor$ gapped k-mer
- All w bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

- Query every |w/2| gapped k-mer
- All w bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
##_#_##
CGATCGACTAGCATCGAACGTACG . . .
```


- Query every |w/2| gapped k-mer
- All w bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
TC A TA GA C TA
AC A CA
AG A CG
```


- Query every |w/2| gapped k-mer
- All w bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
TC A TA GA C TA
AC A CA
AG A CG
```


- Query every |w/2| gapped k-mer
- All w bases count as covered
- Check how many bases are covered by a human gapped k-mer
- Threshold to decide if human or not

```
##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
TC A TA GA C TA
AC A CA
AG A CG
```


CLEANIFIER

- High accuracy
- Low memory footprint (supports shared memory)
- Fast filtering
- Supports short and long reads

Install the software from bioconda: > conda install -c bioconda cleanifier See hinconda eithub in

Johanna Elena Schmitz

Inês Alves Ferreira

 [5] F. Paten, F. Sandon, and J. Singler. Cache, bash and space afficient bloom.
 Simon, In C. Dennimura, affice. Experimental Algorithms, pages 289–121, Berlot, Holdsberg, 2007. Springer Berlot Statistings.
 [6] J. E. Salmita, J. Deniguel, and S. Habragon. Blooked bloom bloom with choices. arXiv pression arXiv:2003.138177, 2019.

Moein Karami