
Cleanifier: Removing human DNA contamination
with a pangenomic gapped k-mer index

Jens Zentgraf, Johanna Elena Schmitz, Sven Rahmann
Saarland University

GCB 2025

> conda install -c bioconda cleanifier Cleanifier

Motivation 2

Microbiome
community

+

Host

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

Remove host
contamination

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

Remove

Keep

Remove host
contamination

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

RemoveFalse
positive

Keep

False
negative

Remove host
contamination

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

RemoveFalse
positive

Keep

False
negative

Remove host
contamination

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Motivation 2

Mixed reads
Microbiome
community

+

Host

RemoveFalse
positive

Keep

False
negative

Remove host
contamination

Privacy
Human data cannot be made public

Downstream analysis
Reduce problems in binning and
assembly

Background 3

Definitions
k-mers

Substrings of length k

Reverse complements (rc)
Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k

Reverse complements (rc)
Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC
GATCG
 ATCGA
 TCGAC
 CGACT

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC
GATCG
 ATCGA
 TCGAC
 CGACT

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC GATCG
GATCG CGATC
 ATCGA TCGAT
 TCGAC GTCGA
 CGACT AGTCG

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC GATCG
GATCG CGATC
 ATCGA TCGAT
 TCGAC GTCGA
 CGACT AGTCG

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC GATCG GATCG
GATCG CGATC GATCG
 ATCGA TCGAT TCGAT
 TCGAC GTCGA TCGAC
 CGACT AGTCG CGACT

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
k-mer rc canonical
CGATC GATCG GATCG
GATCG CGATC GATCG
 ATCGA TCGAT TCGAT
 TCGAC GTCGA TCGAC
 CGACT AGTCG CGACT

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
##_#_##
CG T GA
GA C AC
 AT G CT
 TC A TA
 CG C AG
 . . .

More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Background 3

Definitions
k-mers

Substrings of length k
Reverse complements (rc)

Reverse order
A ↔ T, C ↔ G

Canonical k-mer
Maximum of k-mer and rc(k-mer)

Gapped k-mers (spaced seeds)
k significant positions (#)
Window size w
w − k insignificant positions (_)
##_#_##

CGATCGACTAGCATCGAACGTACG . . .
##_#_##
CG T GA
GA C AC
 AT G CT
 TC A TA
 CG C AG
 . . .
More robust against substitutions
Design of Worst-Case-Optimal Spaced Seeds
at WABI 2025

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Comparison 4

Hostile
Alignment based
Human reference
Bowtie2 or Minimap2

Kraken2
k-mer based
Metagenomic classification
Default database (very large)

NoHuman
Kraken2 wrapper
Custom Human database (smaller)

HRRT
k-mer based
Min-hash based (Jaccard Similarity)
Include all k-mers from
human derived eukaryotic species
Exclude all k-mers in
non-eukaryotic species

Deacon
Minimizer based
Pangenome approach

Cleanifier
Gapped k-mer based
Pangenome approach

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references

T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference

1000 Genome Project
Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures

1 Bucketed Cuckoo hash table
Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures
1 Bucketed Cuckoo hash table

Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Index Construction 5

######_#######_###_#######_###### k = 29,w = 33

Human references
T2T reference
1000 Genome Project

Extract all variants
(Substitution, Insertion and Deletion)
Allele frequency of at least 1%

Human Pangenome Refence Consotrium
47 assemblies

IPD-IMGT/HLA database
HLA is highly variable

cDNA transcripts
Deal with RNA

Data structures
1 Bucketed Cuckoo hash table

Exact data structure
Stores the k-mers
Size 13.85 GB

2 Windowed Cuckoo filter
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p = 2−14

Size 6.9 GB

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Windows

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Windowed Cuckoo Filter 6

Data structure
Probabilistic set membership
data structure
Store a fingerprint (of p bits)
instead of the k-mer
False positive rate of 2−p

d hash functions
Window size of ℓ
High fill rates possible

d = 2, ℓ = 4 fill rate of ≈ 0.9989

Slots

Smaller and More Flexible Cuckoo Filters
at ALENEX 2026

Classification 7

Microbiome
sample

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

optional
paired-end

short or
long reads

Split reads
into k-mers

Classification
based on
covered

base pairs

Result

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

Kept micobiome
reads

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

Filtered human
 reads (optional)

Query sampled
k-mers in the index

(default)

Query all
k-mers in the index

(sensitive mode)

Remove host contamination

Human k-mer
index

Index

0110

0110
01110000

0000

10001111

1111
1111
0001
1110 1101

1001

1001

1001
1011

ACCAGTTTGAC
ACC TTT
 CCA TTG
 CAG TGA
 AGT GAC

ACCAGTTTGAC
> 0.6 covered
 (human)

• T2T reference
• human pangenome
• HLA variants
• SNPS

Sensitive mode 8

Query all gapped k-mers
All k bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .

Sensitive mode 8

Query all gapped k-mers
All k bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .

Sensitive mode 8

Query all gapped k-mers
All k bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AG A CG
GA C AC GC T GA
 AT G CT CA C AA
 TC A TA AT G AC
 CG C AG TC A CG
 GA T GC CG A GT
 AC A CA GA C TA
 CT G AT AA G AC
 TA C TC AC T CG

Sensitive mode 8

Query all gapped k-mers
All k bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AG A CG
GA C AC GC T GA
 AT G CT CA C AA
 TC A TA AT G AC
 CG C AG TC A CG
 GA T GC CG A GT
 AC A CA GA C TA
 CT G AT AA G AC
 TA C TC AC T CG

Sensitive mode 8

Query all gapped k-mers
All k bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AG A CG
GA C AC GC T GA
 AT G CT CA C AA
 TC A TA AT G AC
 CG C AG TC A CG
 GA T GC CG A GT
 AC A CA GA C TA
 CT G AT AA G AC
 TA C TC AC T CG

Sampling mode 9

Query every ⌊w/2⌋ gapped k-mer
All w bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .

Sampling mode 9

Query every ⌊w/2⌋ gapped k-mer
All w bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .

Sampling mode 9

Query every ⌊w/2⌋ gapped k-mer
All w bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
 TC A TA GA C TA
 AC A CA
 AG A CG

Sampling mode 9

Query every ⌊w/2⌋ gapped k-mer
All w bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
 TC A TA GA C TA
 AC A CA
 AG A CG

Sampling mode 9

Query every ⌊w/2⌋ gapped k-mer
All w bases count as covered
Check how many bases are covered
by a human gapped k-mer
Threshold to decide
if human or not

##_#_##
CGATCGACTAGCATCGAACGTACG . . .
CG T GA AT G AC
 TC A TA GA C TA
 AC A CA
 AG A CG

Evaluation 10

HG002 HG003 HG004 HG005 HG006

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

Fr
a
ct

io
n
 o

f
re

m
o
v
e
d
 r

e
a
d
s

Human data

Cleanifier (exact, sampling)

Cleanifier (probabilistic, sampling)

Cleanifier (exact, sensitive)

Cleanifier (probabilistic, sensitive)

Hostile

noHuman

Kraken 2

HRRT

Deacon

Evaluation 10

HG002 HG003 HG004 HG005 HG006

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

Fr
a
ct

io
n
 o

f
re

m
o
v
e
d
 r

e
a
d
s

Human data

Cleanifier (exact, sampling)

Cleanifier (probabilistic, sampling)

Cleanifier (exact, sensitive)

Cleanifier (probabilistic, sensitive)

Hostile

noHuman

Kraken 2

HRRT

Deacon

gastrointestinal airways oral skin urogenital

99.983%

99.985%

99.988%

99.990%

99.993%

99.995%

99.998%

100.000%

Fr
a
ct

io
n
 o

f
re

ta
in

e
d
 r

e
a
d
s

Microbiome data

Evaluation 11

0 500 1000 1500 2000 2500 3000 3500
Wall time [s]

Deacon

HRRT

Kraken 2 + Krakentools

noHuman

Hostile

Cleanifier
(probabilistic, sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(probabilistic, sampling)

Cleanifier
(exact, sampling)

x3.53

x7.85

x15.44

x2.59

x72.01

x5.47

x8.22

fastest

x1.08

Human data

Evaluation 11

0 500 1000 1500 2000 2500 3000 3500
Wall time [s]

Deacon

HRRT

Kraken 2 + Krakentools

noHuman

Hostile

Cleanifier
(probabilistic, sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(probabilistic, sampling)

Cleanifier
(exact, sampling)

x3.53

x7.85

x15.44

x2.59

x72.01

x5.47

x8.22

fastest

x1.08

Human data

0 500 1000 1500 2000 2500
Wall time [s]

Deacon

HRRT

Kraken 2 + Krakentools

noHuman

Hostile

Cleanifier
(probabilistic, sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(probabilistic, sampling)

Cleanifier
(exact, sampling)

x3.90

x22.32

x58.63

x3.80

x4.92

x6.80

x14.00

fastest

x1.25

Microbiome data

Summary 12

Cleanifier
High accuracy
Low memory footprint
(supports shared memory)
Fast filtering
Supports short and long reads

HG002 HG003 HG004 HG005 HG006

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

Fr
a
ct

io
n
 o

f
re

m
o
v
e
d
 r

e
a
d
s

Human data

Cleanifier (exact, sampling)

Cleanifier (probabilistic, sampling)

Cleanifier (exact, sensitive)

Cleanifier (probabilistic, sensitive)

Hostile

noHuman

Kraken 2

HRRT

Deacon

gastrointestinal airways oral skin urogenital

99.983%

99.985%

99.988%

99.990%

99.993%

99.995%

99.998%

100.000%

Fr
a
ct

io
n
 o

f
re

ta
in

e
d
 r

e
a
d
s

Microbiome data

0 500 1000 1500 2000 2500 3000 3500
Wall time [s]

Deacon

HRRT

Kraken 2 + Krakentools

noHuman

Hostile

Cleanifier
(probabilistic, sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(probabilistic, sampling)

Cleanifier
(exact, sampling)

x3.53

x7.85

x15.44

x2.59

x72.01

x5.47

x8.22

fastest

x1.08

Human data

0 500 1000 1500 2000 2500
Wall time [s]

Deacon

HRRT

Kraken 2 + Krakentools

noHuman

Hostile

Cleanifier
(probabilistic, sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(probabilistic, sampling)

Cleanifier
(exact, sampling)

x3.90

x22.32

x58.63

x3.80

x4.92

x6.80

x14.00

fastest

x1.25

Microbiome data

> conda install -c bioconda cleanifier

Posters 13
P037

Fast and Low-Resource Alignment-free Methods
for Sequence Analysis

Jens Zentgraf1,2 Johanna Elena Schmitz1,2 Sven Rahmann1

1 Algorithmic Bioinformatics, Saarland University and Center for Bioinformatics Saar, Saarland Informatics Campus,
Saarbrücken, Germany

2 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany Algorithmic
Bioinformatics

Motivation

With the increasing number of sequencing data in
many fields, such as metagenomics, oncology or human
genetics, the demand for fast, low-resource and
accurate alignment-free methods is growing.
We present three alignment-free tools that build a
gapped k-mer index using Cuckoo hashing.
All tools are implemented in just-in-time compiled
Python and available via GitLab and Bioconda.

Hackgap CleanifierXengsort

Background

▶ Gapped k-mers (spaced seeds)

ACCTGACTGATG mask: #__###__#

A__TGA__G w=9, k=5

C__GAC__A

C__ACT__T

T__CTG__G

▶ Divide the reference genomes into
overlapping gapped k-mers

▶ Store canonical integer encoding
of all gapped k-mers in a
(d , l) Cuckoo hash table (or
Cuckoo filter) with d independent
bucket hash functions and l slots
per bucket

▶ (d , l) Cuckoo hashing (here, d = 2, l = 4)

bucketsize 4

f2()

f1()

f2()

f1()

f2()

f1()

bucketsize 4

f2()

f1()

Inserting key into a (2, 4) Cuckoo hash table

f2()

f1()

bucketsize 4

f2()

f1()

bucketsize 4

▶ (d , l) Cuckoo filter [1]
▶ Probabilistic set membership queries (or key-value store)
▶ Stores a p-bit fingerprint instead of the exact key
▶ Same collision resolution strategy as a Cuckoo hash table

Hackgap [2]

Problem
▶ Count all (gapped) k-mers of

a reference genome or
sequenced samples

▶ First k-mer counter that
supports gapped k-mers

▶ Applications: error correction,
SNP calling, etc.

N
um

be
r o

f k
-m

er
s

k-mer count

108

107

106

3 10050

T = 14

0 2,000 4,000 6,000 8,000 10,000 12,000
Sum of wall time [s]

kmc3-k25

gerbil-k25

hackgap-k25

hackgap-m2

hackgap-m3

hackgap-m4

kmc3-k25
gerbil-k25
hackgap-k25
hackgap-m2
hackgap-m3
hackgap-m4

Tool

Xengsort [3]

Problem

Tumor cell line

Mouse
(graft organism)

Tumor

engraftment

Treatment

No treatment

Xenograft sorting

▶ Given a sample with mouse (host) and
human (graft) reads

▶ Assign each read to either host, graft, both,
ambiguous or neither

Solution
▶ Build a gapped k-mer index that stores

(gapped k-mer, species) key-value pairs
▶ Classify reads based on bases covered by

human and mouse gapped k-mers

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

N
um

be
r o

f r
ea

ds
 in

 m
ill

io
ns

host graft ambiguous both neither

xenofilteR
count-k25
count-(25-35)
coverage-k25
coverage-(25-35)

0 200,000 400,000 600,000 800,000
Sum of wall time [s]

bwa-mem2

xenofilteR

count-k25

count-(25-35)

coverage-k25

coverage-(25-35)

x1.11

x20.18

fastest
x1.24

x1.07

Cleanifier [4]

Problem
▶ Given a microbiome sample from

a human body site
▶ Filter out all human reads

Solution
▶ Build a human pangenome index
▶ We support both a Cuckoo hash

table (larger, exact) or filter
(smaller, probabilistic)

Host Microbiome
community

+

Remove host
contamination

KeepRemove

Mixed reads

False
positive False

negative

Filtering steps

Microbiome
sample

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

optional
paired-end

short or
long reads

Split reads
into k-mers

Classification
based on
covered

base pairs

Result

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

Kept micobiome
reads

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

FASTQ

@Header
GTAACGAT
+
FFFFFFFF

Filtered human
 reads (optional)

Query sampled
k-mers in the index

(default)

Query all k-mers
in the index

(sensitive mode)

Remove host contamination

ACCAGTTTGAC
ACC TTT
 CCA TTG
 CAG TGA
 AGT GAC

ACCAGTTTGAC
> 0.6 covered
 (human)

Human k-mer
index

Index

0110

0110
01110000

0000

10001111

1111
1111
0001
1110 1101

1001

1001

1001
1011

• T2T reference
• human pangenome
• HLA variants
• SNPS

HG002 HG003 HG004 HG005 HG006

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

Human data

Cleanifier (exact, sampling)
Cleanifier (prob., sampling)
Cleanifier (exact, sensitive)
Cleanifier (prob., sensitive)
Hostile
noHuman
HRRT
Kraken 2

intestinal airways oral skin urogenital
0.999825

0.999850

0.999875

0.999900

0.999925

0.999950

0.999975

1.000000

Ac
cu

ra
cy

Microbiome data

0 500 1000 1500 2000 2500 3000 3500
Wall time [s]

HRRT

Kraken 2 +
Krakentools

noHuman

Hostile

Cleanifier
(prob., sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(prob., sampling)

Cleanifier
(exact, sampling)

x7.85

x15.44

x2.59

x72.01

x5.60

x8.06

fastest

x1.08

0 500 1000 1500 2000 2500
Wall time [s]

x22.32

x58.63

x3.80

x4.92

x6.98

x13.56

fastest

x1.25

HRRT

Kraken 2 +
Krakentools

noHuman

Hostile

Cleanifier
(prob., sensitive)

Cleanifier
(exact, sensitive)

Cleanifier
(prob., sampling)

Cleanifier
(exact, sampling)

Summary

▶ Alignment-free methods are fast, memory frugal and accurate
alternatives to alignment-based methods

▶ The presented tools
▶ store gapped k-mers in a Cuckoo hash table (or Cuckoo filter),
▶ support short and long reads,
▶ support parallelization and storing the index in shared memory,
▶ support compressed and uncompressed I/O.

References

[1] Johanna Elena Schmitz, Jens Zentgraf, and Sven Rahmann. Smaller and more flexible cuckoo filters, 2025.

[2] Jens Zentgraf and Sven Rahmann. Fast gapped k-mer counting with subdivided multi-way bucketed cuckoo hash

tables. In Christina Boucher and Sven Rahmann, editors, 22nd International Workshop on Algorithms in Bioinformatics

(WABI 2022), volume 242 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:20. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2022. ISSN: 1868-8969.

[3] Jens Zentgraf and Sven Rahmann. Fast lightweight accurate xenograft sorting. Algorithms for Molecular Biology,

16(1):2, 2021.

[4] Jens Zentgraf, Johanna Elena Schmitz, and Sven Rahmann. Cleanifier: A fast and lightweight k-mer based tool to

remove contamination in microbial sequence data, 2025.

zentgraf@cs.uni-saarland.de, jschmitz@cs.uni-saarland.de Department of Computer Science and Center for Bioinformatics, Saarland University

Johanna Elena Schmitz

P075
Blocked Bloom Filters with Choices

Johanna Elena Schmitz1,2 Jens Zentgraf1,2 Inês Alves Ferreira1,2 Sven Rahmann1

1 Algorithmic Bioinformatics, Saarland University and Center for Bioinformatics Saar,
Saarland Informatics Campus, Saarbrücken, Germany

2 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany
Algorithmic

Bioinformatics

Introduction

Motivation
Probabilistic filters are approximate set membership data structures that effi-
ciently store a set of keys, allowing queries with no false negatives but some false
positives. In genomics, they can store a reference genome or sequenced sample as
a set of short DNA fragments. Since the exact number of fragments is unknown
in advance, filters like Cuckoo or XOR filters are unsuitable, as they require a pre-
defined capacity and fail if this capacity is exceeded. In contrast, Bloom filters
can exceed capacity at the cost of a higher false positive rate (FPR). Blocked
Bloom filters with choices, named BlowChoc filters, can improve upon Blocked
Bloom filters by allowing multiple choices of blocks per key. Our new data struc-
ture uses less space at the same false positive rate or has a lower false positive
rate at the same space consumption as a blocked Bloom filter.

Bloom Filters
▶ Array of size m
▶ Space for n keys
▶ k positions are

set for each key
Blocked
Bloom
Filter

Standard
Bloom
Filter

Each key has a block.
All bits are in that block
(designed to have the
size of a cache line).

Evenly distributed
among the array.

Higher throughput
due to all k bits

in a single
block (cache line).

Lower throughput due
to the k random memory
accesses (cache misses).

Even load
↓

Lower FPR

Uneven load
↓

Higher FPR

FPRBit Selection
Insertion and
Lookup time

Bloom Filters With Choices (BlowChoc Filters)

BlowChoc Filters
▶ Similar to Blocked Bloom Filters
▶ Possible blocks for a key: c
▶ Block selection with cost function:

costβ(j , a) := β(j/128) + a/k

▶ total number of bits that would be set
in the block after insertion: j

▶ number of bits that would have to be
newly set in the block: a

▶ variable parameter: β ≈ (1 +
√
5)/2

...1 1 1 11 1110 0 0 0 0 0 0 0

f1(x) f2(x) f9(x) f10(x)

A Blocked Bloom Filter
Insert key x

...

B Blocked Bloom Filter with Choices
Insert key x

...

h1(x) h2(x)

M blocks

...1 1 1 11 1110 0 0 0 0 0 0 0
cost(x) = 8

f1(x) f2(x) f9(x) f10(x)

512 bits

...1 1 1 1 10 0 0 0 0 00 00 0 0
cost(x) = 5

f1(x) f2(x) f9(x) f10(x)

512 bits

...

h1(x)

512 bits

M blocks

Figure: Inserting a key into a Blocked Bloom filter, with and without choices. (A) The key is hashed to a single block, and k bits are set in this block.
(B) The key may be inserted into one of two possible blocks. After computing the insertion cost for both blocks, the k bits are set in the block with
lower cost.

Throughput Evaluation

Figure: Throughput (million keys per second of wall time; higher is better) for different numbers k of bit
address hash functions using 9 threads for (A) inserting, (B) successfully querying, and (C)
unsuccessfully querying in a filter with 16 Gbits (2 GB of RAM) of random data.

Memory vs. Time

Filter type Time [m:s] Space [GB]
Standard Bloom 25:55 43.93
Blocked Bloom 08:32 51.23
Blow2Choc 12:25 44.38
Blow3Choc 13:44 43.75

Table: Wall-clock build times using 9 threads (minimum of
3 runs) and the required filter sizes to obtain an FPR of
2−14. The best (lowest) value per column is marked in
bold and underlined.

Figure: Data in the table corresponds
to the Axolotl genome that contains
17.7G keys if the DNA is fragmented
into pieces with 31 nucleotides.

Save time with:
▶ Just-in-time (JIT) compiled Python with numba

▶ Software prefetching
▶ Efficient parallelization with multithreading

Summary of Results
▶ BlowChoc filters can avoid the large space requirements that Blocked Bloom filters have (for k > 7).
▶ Blocked Bloom filters are the fastest, while BlowChoc filters use less memory.
▶ Blow2Choc filters offer a good balance between speed and memory efficiency.

Semi-Optimal Insertion

Motivation:
▶ If we knew in advance all the keys that will be inserted in the filter, is it possible to decrease the FPR? If we have this information, we can choose the ”optimal block” for

a key considering other keys that might be inserted in the same block and ”reusing” bits that are set by other keys.

Algorithm:
▶ Consider n keys inserted in their c possible blocks
▶ Order blocks - highest to lowest number of inserted keys
▶ For each block:
▶ Compute bit score - how many keys are ”using” a bit
▶ Score all keys - score is the sum of bit scores
▶ Insert keys from highest to lowest score
▶ Stop when ”threshold” bits are set in the block

▶ Remaining keys are inserted using the cost function

1 0 0 0 0 1 0 1 0 0 1 0 0 1 0

1 0 0 0 0 2 0 3 0 0 2 0 0 1 0

x y z

Filter
array

Score
array

score(x) = 6 score(y) = 7 score(z) = 6

Figure: Semi-optimal insertion of keys. This figure represents one block of the filter and 3 keys that could be
inserted in this block. Elements that use bits where more elements are ”inserted” have higher scores.

80 100 120 140 160 180 200 220
Set bit threshold

−14.5

−14.0

−13.5

−13.0

−12.5

lo
g 2

(F
P
R

)

”Optimal” 2 Choices

”Optimal” 3 Choices

Blocked

Blow2Choc

Blow3Choc

Figure: FPR for different types of Bloom filters using k = 14
where 1G keys of random data were inserted and 5G keys were
queried.

Summary of results:
▶ High thresholds lead to higher FPRs

due to less flexibility in inserting the
remaining elements using the cost
function.

▶ The FPR of BlowChoc filters can
be slightly improved by knowing the
keys in advance. This improvement
is larger using 3 choices for blocks.

References

[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[2] S. K. Lam, A. Pitrou, and S. Seibert. Numba: a llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

[3] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[4] F. Putze, P. Sanders, and J. Singler. Cache-, hash- and space-efficient bloom
filters. In C. Demetrescu, editor, Experimental Algorithms, pages 108–121,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[5] J. E. Schmitz, J. Zentgraf, and S. Rahmann. Blocked bloom filters with choices.
arXiv preprint arXiv:2501.18977, 2025.

Department of Computer Science and Center for Bioinformatics, Saarland University

Inês Alves Ferreira

P079
Cap k-mers: Simple but efficient and flexible seeds

Moein Karami1,2 Jens Zentgraf1,2 Sven Rahmann1

1 Algorithmic Bioinformatics, Saarland University and Center for Bioinformatics Saar,
Saarland Informatics Campus, Saarbrücken, Germany

2 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany
Algorithmic

Bioinformatics

Summary

▶ Efficient seed sampling is critical for large-scale
sequence analysis

▶ k-mers: fast to compute but vulnerable to mu-
tations

▶ Gapped k-mers: reduced vulnerability to sub-
stitutions, yet vulnerable to indels

▶ Cap k-mers: novel seed type introduced to
balance mutation robustness with indel flexibil-
ity

Goals

Design seed constructs that maintain:
▶ computational efficiency: fast generation
▶ robustness to SNPs: tolerant to single-

nucleotide polymorphisms
▶ robustness to indels: resilient against inser-

tions and deletions
▶ high discriminative power: generate seeds

as unique as k-mers, while accommodating se-
quence variations

Background

▶ A k-mer is a substring of length k extracted
from a given sequence.

▶ Gapped k-mers improve tolerance to SNPs by
selecting only significant positions and ignoring
insignificant ones when extracting nucleotides.

Statistics: Human vs. Mouse DNA

Figure: Exe-

cution time for

indexing seeds

from the hu-

man and mouse

genomes..

Figure:
Intersection

percentage of

extracted seeds

between human

and mouse

genomes as

a function

of mask

combinations

and cap values.

Figure:
Increasing the

number of

caps reduces

discriminative

power, with the

effect varying

across different

values of v .

References

[1] M. Karami, A. S. Mohammadi, M. Martin, B. Ekim, W. Shen, L. Guo, M. Xu, G. E.
Pibiri, R. Patro, and K. Sahlin. Designing efficient randstrobes for sequence similarity
analyses. Bioinformatics, 40(4):btae187, 2024.

[2] S. Rahmann and J. Zentgraf. Worst-case-optimal spaced seeds. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2025.

[3] K. Sahlin. Effective sequence similarity detection with strobemers. Genome Research,
31(11):2080–2094, 2021.

[4] J. Zentgraf and S. Rahmann. Fast lightweight accurate xenograft sorting. Algorithms for
Molecular Biology, 16(2), 2021.

Cap k-mers

Cap k-mers are k-mers from which we remove some characters in a pseudo random manner. Unlike k-mers, they
are less vulnerable to SNPs and indels. Compared to gapped k-mers, they provide robustness to all major muta-
tion types while maintaining a small window. Cap k-mers can be combined with other seed types and offer a hybrid
design. Each cap k-mer is defined by a tuple (v , c), where v is the window length and c is the number of internal
gaps. Consequently v = k + c .
A single cap k-mer at position i is defined as the subsequence
achieved by removing c = 1 character from the v -mer starting at
position i in a pseudo random manner.
A circular cap k-mer at position i is defined as the subsequence
achieved by removing one block of characters of size c from the
v -mer starting at position i in a pseudo random manner. Note that
the v -mer will be considered as a circular sequence here.
A slippery cap k-mer at position i is defined as the subsequence
achieved by removing one block of characters of size c or a block of
size c − 1 and the last character from the v -mer starting at position
i in a pseudo random manner.

Figure: Workflow of creating a slippery cap 3-mer with c = 3. Dark blue blocks
represent nucleotides of the k-mer, while light blue blocks indicate removed
nucleotides.

Figure: Workflow of creating a single cap 3-mer. Dark
blue blocks represent nucleotides in the original k-mer,
while light blue blocks indicate the removed nucleotide.

Figure: Workflow of creating a circular cap 3-mer with
c = 3. Dark blue blocks represent nucleotides of the
k-mer, while light blue blocks indicate removed
nucleotides.

Result

▶ Criteria: robustness to SNPs/indels,
discriminative power, and execution time.

▶ Variants: k-mers, gapped k-mers, cap
k-mers, and cap gapped k-mers (caps
applied to gapped v -mers).

▶ Protocol: mutation probability per
nucleotide varied; discriminative power
quantified via cross-species overlap.

▶ Setup: fixed length v = 30; comparable
masks and cap counts used where
applicable.

Figure: Robustness to sequence variations is evaluated by generating a random sequence of length 100000, introducing mutations, and
measuring coverage between the original and the altered sequences. Types of included variations is mentioned on top of each plot. The
y-axis shows the number of covered base pairs, and the x-axis represents the mutation probability per nucleotide. The number on the right
side of seed names, represents the number of caps. Two masks are also used: 1111010110111010111010101110101110110101111 and
111111111110101010101010101011111111111 for gapped special cap k-mers (1 indicates a significant position)

Conclusion

Cap k-mers do not generally outperform gapped k-
mers. However, they show superior performance to
gapped k-mers when indels are expected. Given their

relatively small execution time overhead and ability to
enhance error tolerance while preserving discriminative
power, cap k-mers are recommended as an additive

layer on top of existing seed types.

German Conference on Bioinformatics (GCB) moein2000n@gmail.com

Moein Karami

