DUISBURSG s B4 =ﬁ= Universititsklinikum Essen hJ technische universitat fakultat fur
ESSEN Ny 5% dortmund informatik

Fast lightweight accurate xenograft sorting

Jens Zentgraf & Sven Rahmann
Genome Informatics, Institute of Human Genetics
University of Duisburg-Essen, Essen, Germany

WABI 2020, 07.-09. September 2020

(Patient-derived) xenografts

A
, +CAR-T
»
7
—

Sellng

Xenograft model CAR-T preclinical study

Tumor cell line Tumor

engraftment

Source: Creative AniModel,

https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

tumor cell lines

or patient tumor samples
implanted in mice

study tumor heterogeneity,
evolution

sequencing of samples
mixture of human+mouse DNA
First task: separate/sort reads
("xenograft sorting"), or:
extract graft (human) reads

https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

Mouse and Human Genetic Similarities

Mouse chromosomes Human chromosomes
1 2 3 4 5 6 1 2 3 4 5 6 7 8 9
6 10 8 8 7 []
] 3 7
2 2 4 9 4 =
1
3 2
18 15 130
1] = .
1 1
2 4 13 -
10 11 12 13 14 17 18
10 11 12 13 14 15
22 2 § 3 5
6
10 14 8
22 5 6 8
a X 2
17 5 13 1
* I g 19 20 21 2 X Y
19 X Y ! I I 5
11 v
] E ;
X
10
Source: https://public.ornl.gov/site/gallery/originals/ Courtesy Lisa Stubbs
Mouse_and_Human_Genetic_Similarities_-_original.jpg Oak Ridge National Laboratory
YGA 98-075R2

https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg
https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg

Problem: Human-Aligned Mouse Alleles (HAMAS)

m mouse reads may align to human genome S.Y. Jo, E. Kim, and S. Kim.
m may lead to false human (tumor) variant calls Impact of mouse contamination in

: _ genomic profiling of
m oncogenes particularly prone to this effect patient-derived models and best

practice for robust analysis.
Human Reference

el Bxon = = S Genome Biology, 20(1):Article 231,

Nov 2019.
P
P
=
& o om=e =
d - - - - N
= = easeme 3
[Sepep——— —=u \ kY
- e @ » \ = \
x = - B \ =29 \
o == \ v \ \
" \ -~ \ \
X \
T HAMA mouse-reads human-reads
Hf= z/d

The xenograft sorting problem

Given: sequenced xenograft sample (reads from two species),
paired-end or single-end,
genomic or transcriptomic reads,

sort the reads into five categories according to species of origin:
host (mouse), graft (human), both, neither, ambiguous

or: partially sort using fewer categories (host, graft, other),
or: count how many reads are in each category,
or: filter (select) only graft (human) reads.

Two kinds of tools: aligned BAM vs. raw FASTQ input

Tool Input Operations Lang.
XenofilteR aligned BAM filter R

Xenosplit aligned BAM filter, count Python
Bamcmp aligned BAM partial sort C++
Disambiguate aligned BAM partial sort Python or C++
BBsplit raw FASTQ partial sort Java

xenome raw FASTQ count, sort C++

xengsort raw FASTQ count, sort Python

k-mer methods for xenograft sorting

Partition each read into its k-mers

Look up information on each k-mer in a table
[k-mer -~ human | mouse | both]

Absent k-mers occur in neither species.

Aggregate k-mer information into a statement
about the read [e.g., majority vote]

GATTCATGC. ..

GATTC
ATTCA
TTCAT
TCATG
CATGC

Goal: "Fast lightweight accurate xenograft sorting”

fast

accurate

fast:
m slow random memory accesses
m 3-way bucketed Cuckoo hashing
m buckets fit within a cache line

lightweight (small memory footprint):
m 4.5 billion 25-mers + values
m high load (little wasted space)
m quotienting

accurate:
m identical + highly similar sequences
m "weak" k-mers
lightweight m multi-level decision rule

3-way Cuckoo hashing with 4-buckets

m 3 hash functions:

m each maps a k-mer to a bucket.

m Each bucket can store up to 4 elements.
m Idea: bucket fits within a cache line.

m 12 possible locations for each element.
At worst 3 memory lookups (cache misses),
often only 1 or 2.

Insertion by random walk

m Insert x: try buckets £, (x), £,(x), f,(x) in order;
insert into first bucket with space available.
m [f all full, evict a random element,
place current element into now free slot.
m Re-insert evicted element into different slot. T
m May cause another eviction...
= random walk through table.
m Limit length of walk (e.g. 500 steps).
Fail if limit reached.

Speed vs. space: High vs. very high loads

(h,b) = (3,4) allows loads up to 99.9%.

Lower loads offer better choice distribution:
more elements at their first choice;
lower average cost (cache misses).

Placement can be optimized exactly
(Zentgraf et al., ALENEX 2020).

Random walk degrades near 100%.
At 88%, random walk performs ok.

Cost

2.0

1.6

- Random walk - S/
Optimal g i/

Costs for existing keys

g —
1‘ : m
b=3 2
b=4 "' L E
—_ l‘l’ E-g
b=5 2
b=6 "'._'m
b=7 '
b=8

Optimal

0.6 0.7 0.8 0.9 1.0
load factor

Weak k-mers

Host or graft k-mers with a close neighbor (Hamming distance 1)
in the other species are not as reliable ("weak"):
A single nucleotide variation suffices to switch species.

After building the hash table, we mark weak k-mers.

Value set of size 5: host, weak host, graft, weak graft, both.
Each k-mer in the table has exactly one of these values (3 bits).

Fast method to find the Hamming-1 neighbors of each k-mer (see paper).

Xenome: similar concept with 4 values: host, graft, both, marginal.

Saving space with quotienting

Keys: canonical codes of 25-mers (50 bits)
Values: species (5 classes: 3 bits)

4.5 billion k-mers: reference genomes, alternative alleles, cDNA transcripts:
53 bits per entry, load 0.88: 33.88 GB for hash table @

Quotienting to the rescue:

m Do not store full keys (k-mers), but only "quotients" (here 20 bits),
plus hash function choice (2 bits) plus values (3 bits) — 25 bits per entry:

15.98 GB for hash table &
(could be slightly reduced by higher load, value compression, etc.)

Quotienting: Details

Keys are encoded canonical k-mers (half of set [44] := {0, .., 4%-1}).
Step 1: Bijective randomizing function [4¥] — [4%] with a odd
Ga.b(x) := |a - (rotg (x) xor b)| mod 4k

Step 2: Map to buckets (simply mod p: number of buckets). Define

f(x) = ga,b(x) modp and q(x):= ga’b(x) INp.

Then x can be uniquely reconstructed
from f(x) ("hash value, "bucket number") and q(x) ("fingerprint", "quotient").
Sufficient to store g(x) in bucket f(x) (and which hash function was chosen).

Build time [min] & space [GB]

build build mark mark total total | mem size
tool k | CPU wall CPU wall CPU wall| final peak

xengsort 23 50 50 591 176 641 226 | 12.8 17.3
xengsort 25 53 53 437 158 490 211 | 159 204
xengsort 27 51 51 495 214 546 265 17.3 21.8
xenome 25| 992 151 2338 356 3626 552 | 31.2 57.1
XenofilteR — 528 6358 - — 528 658 | 13.0 22.0

xengsotrt: 1 thread for build, 8 for mark
xenome: 8 (9) threads for build and mark
XenofilteR: 8 threads (bwa index)

Read classification

m Partition read into its n valid k-mers

m Look up class of each k-mer and count:

h
g

b:

 h':
, g

X.

k-mers in read belonging to "host", "weak host"
k-mers in read belonging to "graft", "weak graft"
k-mers in read belonging to both species
k-mers in read belonging to neither species

Read classification using (h, h', g, @', b, X; n)

AL < 4+9
%
A\

Quick mode heuristic

(inspired by a similar shortcut in kallisto)

m Examine 3rd and 3rd-last k-mer in read and look up classes.
m If classes agree, classify read accordingly.
m Otherwise, count all k-mers and use decision rule tree.

Results: Comparison of tools

Tool Input Operations Lang.
XenofilteR aligned BAM filter R

Xenosplit aligned BAM filter, count Python
Bamcmp aligned BAM partial sort C++
Disambiguate aligned BAM partial sort Python or C++
BBsplit raw FASTQ partial sort Java

xenome raw FASTQ count, sort C++

xengsort raw FASTQ count, sort Python

H uman d ataset o host graft both neither ambiguous

0.9 -
GIAB human matepair .
dataset (Ashkenazim trio; 0.7+
1258 million read pairs). _06-
(=]
0.5
Almost all graft (correct). g
"Neither" is mostly PhiX. g
0.3 1
Quick mode gives almost -
identical results. .
1
Xenome sometimes e el e e v e i s sl e s
says "ambiguous". 385 288 38§ 3385 2868
g ¢ g ¢ g ¢ g ¢ g ¢

host graft both neither ambiguous

Chicken dataset

0.9+
lllumina-sequenced -
chicken genome. .
XenofilteR only extracts 0.6-

graft (human) reads, 0.54
remainder not classified.
Finds none (correct).

0.4-
0.3-

xengsort: 0.2
Almost all neither (correct). 0.1-

xenome: 10% host, graft, both
(lower specificity).

xengsort -||

xenofilteR -
xengsort—l
xenome
xenoﬁlteR—i
xenome —
xenofilteR -
xengsort—l
xenome
xenofilteR -
xenome —
xenofilteR -
xengsort—‘
xenome —

P DX d ataset host graft both neither ambiguous

1.0+

174 RNA-seq PDX samples |
(human tumor in mouse)
from Jens Siveke, "
University Hospital Essen.
0.5

XenofilteR only extracts o
graft (human) reads, 2
remainder not classified. °*]
0.1+

|
1

T T T T T T T T T T T T T
x X ¥ o x X Y o x X ¥ x X ¥ o x XX ¥ o
o Y o € o Y o g o L o € o LY o € o Y o €
2 5 u g 2 S5 u g 2 5 au g 2 S wu g =2 3 w g
= o O & s o O & s o O & E o O & s o O &
2" 5¢ 2 §&% 2 §&% g §sg& g g
c
Q x X Q x X Q x X [J] x X] x X
X X X x x

174 PDX datasets: Running times [CPU minutes]

Sum of running times [min]
0k 10k 20k 30k 40k 50k 60k 250k 300k

B 254101

bwa+sorting

xenofilteR
xengsort

sort xenome

16043
13555

59691

13285
11516
14667
11824

count xengsort
xengsort opt
xengsort f99
xengsort f99 opt

xengsort quick 5713

Summary: Fast lightweight xenograft sorting

alignment-free approach using 25-mers and decision rule

lightweight on CPU resources, using 3-way bucketed Cuckoo hashing
m Implementation xengsort outperforms xenome;

% of the CPU work, 75 of the wall clock time (both 8 threads)
m Typically it takes the same time just to scan the BAM files (XenofilteR)
m 25-mer table fits into 16 GB RAM, could be made smaller

(higher load, compacted values and choice indicators).

m More times [CPU min] dataset / tool size¢ XfR+ bwa+ sort xenome xengsort
mouse exomes 307 M 310+ 8291+ 179 1823 368

(see paper for datasets) human matepair 1258 M N/A +222939+ 940 9845 2463
chicken genome 251 M 76+ 6976 + 118 1273 592

leukemia RNA 1760 M 778 + 22111+ 521 5188 1680
PDX RNA 9742 M 16043 + 278329 + 5862 59692 13535

Summary: Algorithm Engineering for xenograft sorting

Hash table
3-way bucketed Cuckoo hashing
(with bucket size 4)
m Keys reduced using quotienting
(part of key stored in bucket number)
m Interesting trade offs:
Small buckets = small quotients,
but lower maximum load,
and fewer keys at first hash choice.
Several further engineering opportunities
m Find xengsort at gitlab: https:/gitlab.com/genomeinformatics/xengsort/

ga.p() := [a - (rotg (z) xor b)] mod 4"

https://gitlab.com/genomeinformatics/xengsort/

Appendix

Why k = 25 ?

k-mers k= 23 (%) k=29 (%) K= 27 (%)
total 4396323491 (100) 4496607845 (100) 4576953994 (100)
host 1924087512 (43.8) 2050845757 (45.6) 2105520461 (46.0)
graft 2173923063 (49.4) 2323880612 (51.7) 2395147724 (52.3)
both 18701862 (0.4) 12579160 (0.3) 9627252 (0.2)
wk host 132469231 (3.0) 52063110 (1.2) 32445717 (0.7)
wk graft 147141823 (3.4) 57239206 (1.3) 34212840 (0.7)

Why (h,b) = (3,4) ?

More hash functions (h), larger buckets (b) have © and e effects:

® higher load limit

b|h 2 3
[only 50% for standard (2,1)]
[over 99.9% for (3,4), 1 0.5 0.9179352767
less w/ random walk] 2 0.8970118682 0.9882014140

3 0.9591542686 0.9972857393

© more worst case cache misses (h)
4 0.9803697743 0.9992531564

© more search effort per bucket (b)

S. Walzer. Load thresholds for cuckoo

. . hashing with overlapping blocks.
m (3,4)is a good compromise; ICALP 2018, LIPIcs 107:102.

maybe also (2,8).

