Algorithmic Bioinformatics It :

Qlu UNIVERSITAT S -

. )
T . ZENTRUM FUR
SAARLANDES ‘e ZBI &R

Prof. Dr. Sven Rahmann ;

ASSIGNMENT 2 - ALGORITHMS FOR SEQUENCE ANALYSIS,
SUMMER 2021

Exercise 1: Cyclic permutations (4 Theory)

Given two strings s, ¢t of the same length n, how can you efficiently decide if one is a cyclic
permutation of the other? For example, 0123456 and 2345601 are cyclic permutations of
each other, but 6543210 is not a cyclic permutation of the other two (it’s a reversal).
Give an algorithm that takes the two strings as input and outputs True or False. Your
algorithm should run in O(n) time.

Exercise 2: Bit magic for Hamming distance (4 Theory)

Consider a bit-encoded DNA k-mer for k < 32 (so it fits into 64 bits). While this problem
is in fact independent of the concrete encoding, it may help to have the following default
bit encoding in mind: A — 00, C — 01, G — 10, T + 11. A k-mer is then encoded by
concatenating the bit encodings of the single nucleotides, with leftmost nucleotides getting
the most significant bits, i.e., GCA — (100100); = 36. Unused bits (if £ < 32) take the
value 0. The Hamming distance between two k-mers is the number of positions at which
the nucleotides differ.

Write a function that takes two k-mer codes as input and returns True if and only if the
Hamming distance between the k-mers is < 1. Use only bit operations and avoid loops.
Argue why your function is correct.

Hint: After reviewing methods from the lecture, it may help to first think about how to
test whether a number has a single 1-bit.

Exercise 3: Patterns with variable-length gap and Hamming distance 1 (4 Theory)
Consider the NFA construction (and its bit-parallel implementation) that allows you to
match patterns with variable-length gap, such as the ZNF768 binding pattern

RCTGTGYRN(17,23) CYTCTCTG.

(An implementation was provided in a code example for assignment sheet 1; the same
implementation is provided again this week.)

Extend the construction in such a way that the automaton additionally matches text sub-
strings with a Hamming distance of 1 to the given pattern. Argue that your construction
is correct by stating a lemma about the set of active states after each update step.
Hint: The idea for this exercise is not related to the idea for the previous exercise.

Exercise 4: Implementation of Exercise 3 (4 Programming)

Extend the provided code (or re-implement it together with the extension in a language
of your choice) to implement the Hamming distance 1 search that you developed in the
previous exercise. To access the new feature, add a new option ——allow-mismatch or -M



to the CLI (with help text and all). You may want to read the argparse documentation
about actions like ’store_true’.

Remarks

50% of points in each category theory and programming (over all exercises and not each
assignment sheet separately) are necessary to take the exam.

You are allowed to work in groups of two and only one of the group members need to submit.
Submission is via GitHub Classroom (as demonstrated in the lecture).
Source code must be sufficiently commented and documented to be understandable.

When using a compiled language, compilation instructions and tools must be provided (e.g.,
a Makefile).

In addition to source code, the output must be provided.
Also, a file AUTHORS with your name(s) must be provided.

Copying between groups will result in zero points for all involved groups!

Hand in date: Monday, May 03, before 20:00



