
Algorithmic Bioinformatics
Prof. Dr. Sven Rahmann

Assignment 2 - Algorithms for Sequence Analysis,
Summer 2021

Exercise 1: Cyclic permutations (4 Theory)
Given two strings s, t of the same length n, how can you efficiently decide if one is a cyclic
permutation of the other? For example, 0123456 and 2345601 are cyclic permutations of
each other, but 6543210 is not a cyclic permutation of the other two (it’s a reversal).
Give an algorithm that takes the two strings as input and outputs True or False. Your
algorithm should run in O(n) time.

Exercise 2: Bit magic for Hamming distance (4 Theory)
Consider a bit-encoded DNA k-mer for k ≤ 32 (so it fits into 64 bits). While this problem
is in fact independent of the concrete encoding, it may help to have the following default
bit encoding in mind: A 7→ 00, C 7→ 01, G 7→ 10, T 7→ 11. A k-mer is then encoded by
concatenating the bit encodings of the single nucleotides, with leftmost nucleotides getting
the most significant bits, i.e., GCA 7→ (100100)2 = 36. Unused bits (if k < 32) take the
value 0. The Hamming distance between two k-mers is the number of positions at which
the nucleotides differ.
Write a function that takes two k-mer codes as input and returns True if and only if the
Hamming distance between the k-mers is ≤ 1. Use only bit operations and avoid loops.
Argue why your function is correct.
Hint : After reviewing methods from the lecture, it may help to first think about how to
test whether a number has a single 1-bit.

Exercise 3: Patterns with variable-length gap and Hamming distance 1 (4 Theory)
Consider the NFA construction (and its bit-parallel implementation) that allows you to
match patterns with variable-length gap, such as the ZNF768 binding pattern

RCTGTGYRN(17,23)CYTCTCTG.

(An implementation was provided in a code example for assignment sheet 1; the same
implementation is provided again this week.)

Extend the construction in such a way that the automaton additionally matches text sub-
strings with a Hamming distance of 1 to the given pattern. Argue that your construction
is correct by stating a lemma about the set of active states after each update step.
Hint : The idea for this exercise is not related to the idea for the previous exercise.

Exercise 4: Implementation of Exercise 3 (4 Programming)
Extend the provided code (or re-implement it together with the extension in a language
of your choice) to implement the Hamming distance 1 search that you developed in the
previous exercise. To access the new feature, add a new option --allow-mismatch or -M



to the CLI (with help text and all). You may want to read the argparse documentation
about actions like ’store_true’.

Remarks

• 50% of points in each category theory and programming (over all exercises and not each
assignment sheet separately) are necessary to take the exam.

• You are allowed to work in groups of two and only one of the group members need to submit.

• Submission is via GitHub Classroom (as demonstrated in the lecture).

• Source code must be sufficiently commented and documented to be understandable.

• When using a compiled language, compilation instructions and tools must be provided (e.g.,
a Makefile).

• In addition to source code, the output must be provided.

• Also, a file AUTHORS with your name(s) must be provided.

• Copying between groups will result in zero points for all involved groups!

Hand in date: Monday, May 03, before 20:00


