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Overview

Previous lecture

Hashing, collisions
(h, b) Cuckoo hashing

[
m Locality sensitive hashing
[

Min-hashing: Locality sensitive for Jaccard similarity of k-mer sets

Today's lecture
m Details on min-hashing of DNA k-mers
m Applications
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LSH for Jaccard Similarity
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LSH for Jaccard Similarity

A B _ |AnB|
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U

Claim: Min-Hashing is LS for Jaccard Similarity
A bijective function 7 : U — [0, [U|[ is a ranking (ordering) function of .
The family # of hash functions

h=z(A) := min 7(x),

x€EA

where 7 ranges over all orderings of U, is locality sensitive for S.

...........
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Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:

ANB
= S,(A B) = g

m h(A) = mingea m(x)
m Let a:= h(A) and b := h.(B).

So what is P[a = b] ?
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Proof: Min-Hashing is LS for Jaccard Similarity

Definitions: A B
ANB
- 544.) - {28
u

m h(A) = mingea m(x)

m Let a:= h(A) and b := h.(B).

So what is P[a = b] ?
® a = b iff minimum over elements in AU B is in AN B.
m |AN BJ successes out of |[AU B| possible events
m Thus, Pla=b] = |AN B|/|AU B| = S)(A, B).
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Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:
ANB
= S,(A B) = gl
m h(A) = mingea m(x)
m Let a:= h(A) and b := h.(B).

So what is P[a = b] ?
® a = b iff minimum over elements in AU B is in AN B.
m |AN BJ successes out of |[AU B| possible events
m Thus, Pla=b] = |AN B|/|AU B| = S)(A, B).

Assumptions (min-hashing still useful if weakened)

m Elements of A, B (k-mers) are bijectively encoded, not hashed.

m Truly random permutations are used.
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Sketches: Min-Hashing

Definition: Min-hashing Sketch
A sketch or signature for the Jaccard similarity of the form

hiA ‘— mi P , .:1,..., 9
(A) )I’:"IEI/IR?T(X) i r

where each 7; is an independent random permutation of I/, is a min-hashing sketch.
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Sketches: Min-Hashing

Definition: Min-hashing Sketch
A sketch or signature for the Jaccard similarity of the form

hi(A) == )r21€|2 mi(x), i=1,...,r,
where each 7; is an independent random permutation of I/, is a min-hashing sketch.

Weaker versions in practice

2 Elements of A, B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity
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Sketches: Min-Hashing
Definition: Min-hashing Sketch
A sketch or signature for the Jaccard similarity of the form
hi(A) == )r11€|2 mi(x), i=1,...,r,
where each 7; is an independent random permutation of I/, is a min-hashing sketch.

Weaker versions in practice

2 Elements of A, B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2] Permutations are chosen from a limited set, not perfectly random,
e.g. m(x) = (a- (x @ b)) mod 4% with odd a, some b.
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Sketches: Min-Hashing

Definition: Min-hashing Sketch
A sketch or signature for the Jaccard similarity of the form

hi(A) == )r11€|2 mi(x), i=1,...,r,
where each 7; is an independent random permutation of I/, is a min-hashing sketch.

Weaker versions in practice
2 Elements of A, B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity
2] Permutations are chosen from a limited set, not perfectly random,
e.g. m(x) = (a- (x @ b)) mod 4% with odd a, some b.
3] Computing r hash values is expensive; can one suffice?

m Take r smallest values of one h instead of minima from r functions.
m Partition universe into r subsets, take minimum in each subset separately.
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Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts 7 = { Ty, T2, ..., Ty} and a query sequence Q,
find all texts in 7 that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.
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Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts 7 = {T1, Ty, ..., Ty} and a query sequence Q,
find all texts in 7 that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.
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Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = { Ty, T2, ..., Ty} and a query sequence Q,
find all texts in 7 that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.

m Many methods catalogue all k-mers in the database: k-mer index.

m Goal: Use only a subset of k-mers: k-mer sampling.
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K-mer Sampling: How NOT to do it

Bad idea: Only consider every w-th k-mer in a string
T,

T,

Ty

l

T
S
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K-mer Sampling with Minimizers

A minimizer scheme is a much better approach to sample k-mers.
m Fix an ordering (permutation) of all k-mers: 7.
m Consider a window of w consecutive k-mers.

m Choose the/a k-mer x* such that 7(x*) is minimum among all 7(x) in the
window.

Such an x* is called a (w, k)-minimizer.

Sliding the w-window over the text, we collect all such minimizers.

Example:
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Properties of Minimizers

m If two strings have a sufficiently long exact match (length w + k — 1),
then they are guaranteed to share a (w, k) minimizer

m Even without an exact match of length w + k — 1,
similar strings (Jaccard similarity of k-mer sets)
share a minimizer with high probability.

m Only a small fraction of all k-mers need to be stored:
For a random string this fraction is about 2/(w + 1) on average,
i.e., minimizers do not change frequently.

m Larger w: Smaller sample, but requires higher similarity for guarantees.
Also slightly higher probability of “random hits".
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Practical Considerations

Long vs. short k-mers on DNA
m k < 32: Encode bijectively

m k > 32: Hash k-mers to 64-bit integers (additional collisions possible)
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Practical Considerations

Long vs. short k-mers on DNA
m k < 32: Encode bijectively
m k > 32: Hash k-mers to 64-bit integers (additional collisions possible)

Random permutations?
m For 4 objects, there are (4%)! possible orderings (permutations).
For k S 3: 64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000

m Impossible to pick one truly randomly with a pseudo-random number generator:
Restrict to much smaller sets in practice,

m Two-parameter version: 7, 5(x) = (a- (x ® b)) mod 4 with odd a, any b.
Randomly choose b and odd a only.
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Practical Considerations

Canonical k-mers vs. both strands

m DNA sequence is equivalent to its reverse complement: AAAG = CTTT.

m Store or sample both strands (twice the size) ?

m Alternative: Use canonical k-mers (encodings, hash values):

Among x and its reverse complement X, pick the smaller (or larger) one.

m When using min-hashing, it may be better to use max{x, x}.

Algorithmic Bioinformatics [ﬁn Sinocs S ZBUE

11



Practical Considerations

Canonical k-mers vs. both strands
m DNA sequence is equivalent to its reverse complement: AAAG = CTTT.
m Store or sample both strands (twice the size) ?

m Alternative: Use canonical k-mers (encodings, hash values):
Among x and its reverse complement X, pick the smaller (or larger) one.

m When using min-hashing, it may be better to use max{x, x}.

Gapped k-mers

m If error rates or evolutionary distances are moderately high,
a few equidistant differences may destroy all common k-mers.

m Can use gaped k-mers (masks like #.##. .. .##.#) instead.
m Can use different masks together with different permutations in sketches.

m Possibilities are endless... Interesting research topics!
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Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

® map noisy long reads to genomes or assemblies
M Li, H. (2018). Minimap2: pairwise alighment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/1h3/minimap2
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Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

m map noisy long reads to genomes or assemblies
M Li, H. (2018). Minimap2: pairwise alighment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/1h3/minimap2

Sourmash v4 (Similarity Estimation)

m computes hash sketches from DNA sequences, compares them, estimates

sequence similarity between large datasets quickly and accurately.
B Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27
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Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

m map noisy long reads to genomes or assemblies
M Li, H. (2018). Minimap2: pairwise alighment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/1h3/minimap2

Sourmash v4 (Similarity Estimation)

m computes hash sketches from DNA sequences, compares them, estimates

sequence similarity between large datasets quickly and accurately.
B Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

m Finds species of origin for each read, estimates species abundance.
B Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.
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Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

m map noisy long reads to genomes or assemblies
M Li, H. (2018). Minimap2: pairwise alighment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/1h3/minimap2

Sourmash v4 (Similarity Estimation)

m computes hash sketches from DNA sequences, compares them, estimates

sequence similarity between large datasets quickly and accurately.
B Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

m Finds species of origin for each read, estimates species abundance.
B Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

m Split reads of xenograft samples into several categories
B Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.
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Summary

Locality sensitive hashing for Jaccard similarity: Min-hashing

Sketches and alternative implementations using a single hash function

Sampling DNA sequences by using k-mer minimizers:
1. reduction of size
2. built-in error tolerance

Technical details to consider

Alignment-free methods based on k-mers

Applications
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Possible Exam Questions

Prove that min-hashing is LS for Jaccard similarity

What is a sketch?

Why are sketches useful for similarity search in high-dimensional spaces?
What are minimizers (precisely, (w, k)-minimizers) of a sequence?
What property does the set of minimizers of a sequence have?

What is the effect of changing the window size w?

What is the effect of changing the k-mer size k?

Name some application areas of (w, k)-minimizers in bioinformatics.
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