
Locality Sensitive Hashing
Algorithms for Sequence Analysis

Sven Rahmann
based on slides by Ali Ghaffaari

Summer 2021

Overview

Previous lectures

Various index structures for strings:
Suffix trees, suffix arrays, BWT, FM index, q-gram (k-mer) index

Employ these indexes for exact and approximate search, read mapping

Today’s lecture

Finding exact and approximate matches by hashing techniques

k-mers: encoding vs. hashing

locality sensitive hashing (in general)

min-hashing (on k-mers)

Algorithmic Bioinformatics 2

Part I: Remarks on the k-mer index

Algorithmic Bioinformatics 3

Implementations for a k-mer Index

Observation

The k-mer index is a multimap
which associated each k-mer to its occurrences in the text T .

Implementations

lexicographically sorted starting positions pos of all possible k-mers
+ table start of k-mer bucket starting ranks in pos

positionally sorted starting positions of all possible k-mers
+ table start, as above

Notes: Sorting order of pos within a k-mer bucket is irrelevant.
Suffix array pos is useful for every value of k.

Today: Implementation as a hash table

Algorithmic Bioinformatics 4

Implementations for a k-mer Index

Observation

The k-mer index is a multimap
which associated each k-mer to its occurrences in the text T .

Implementations

lexicographically sorted starting positions pos of all possible k-mers
+ table start of k-mer bucket starting ranks in pos

positionally sorted starting positions of all possible k-mers
+ table start, as above

Notes: Sorting order of pos within a k-mer bucket is irrelevant.
Suffix array pos is useful for every value of k.

Today: Implementation as a hash table

Algorithmic Bioinformatics 4

Implementations for a k-mer Index

Observation

The k-mer index is a multimap
which associated each k-mer to its occurrences in the text T .

Implementations

lexicographically sorted starting positions pos of all possible k-mers
+ table start of k-mer bucket starting ranks in pos

positionally sorted starting positions of all possible k-mers
+ table start, as above

Notes: Sorting order of pos within a k-mer bucket is irrelevant.
Suffix array pos is useful for every value of k.

Today: Implementation as a hash table

Algorithmic Bioinformatics 4

Implementations for a k-mer Index

Observation

The k-mer index is a multimap
which associated each k-mer to its occurrences in the text T .

Implementations

lexicographically sorted starting positions pos of all possible k-mers
+ table start of k-mer bucket starting ranks in pos

positionally sorted starting positions of all possible k-mers
+ table start, as above

Notes: Sorting order of pos within a k-mer bucket is irrelevant.
Suffix array pos is useful for every value of k.

Today: Implementation as a hash table

Algorithmic Bioinformatics 4

Indexing k-mers: Hash Map

Example: Building a 3-mer index

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

1

m

Buckets

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

CGG:0h(CGG)

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(GGC)
CGG:0
GGC:1

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(GCA)
CGG:0
GGC:1

GCA:2

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(CAT)

CGG:0
GGC:1

GCA:2

CAT:3

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(ATC)
CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

CGG:0

h(TCA)

GGC:1

GCA:2

TCA:5

CAT:3

ATC:4

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(CAT)

CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

Algorithmic Bioinformatics 5

Indexing k-mers: Hash Map

Example: Building a 3-mer index

0123456789

T = CGGCATCATG

1

m

Buckets

h(ATG)

CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

Algorithmic Bioinformatics 5

Querying a k-mer Index: Hash Map

Example: Querying an index

0123456789

T = CGGCATCATG

P = ATC

1

m

Buckets

CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

Algorithmic Bioinformatics 6

Querying a k-mer Index: Hash Map

Example: Querying an index

0123456789

T = CGGCATCATG

P = ATC

1

m

Buckets

h(ATC)
CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

Algorithmic Bioinformatics 6

Querying a k-mer Index: Hash Map

Example: Querying an index

0123456789

T = CGGCATCATG

P = ATC

1

m

Buckets

CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

h(ATC)

Algorithmic Bioinformatics 6

Querying a k-mer Index: Hash Map

Example: Querying an index

0123456789

T = CGGCATCATG

P = ATC

1

m

Buckets

h(ATC)
CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

Algorithmic Bioinformatics 6

Querying a k-mer Index: Hash Map

Example: Querying an index

0123456789

T = CGGCATCATG

P = ATC

1

m

Buckets

h(ATC)
CGG:0
GGC:1

GCA:2

CAT:3

ATC:4

CAT:6

TCA:5

ATG:7

Algorithmic Bioinformatics 6

Encoding vs. Hashing

Encoding

Assign a unique integer in [0, 4k [to each k-mer (e.g., base-4 encoding).

Bijective map ΣDNA → {0, . . . , 4k − 1}.
Useful if n = Θ(4k): Size of pos: n; size of start: 4k .

Example: fa(x) := (a · enc(x)) mod 4k , with a odd, enc the base-4 encoding

Hashing

Any (non-bijective) function Σk → {0, . . . , p − 1} for integer p (address space).

Useful if n ≈ p � 4k (large k).

Disadvantages:
storage of k-mers in hash buckets
collisions
below 100% load (empty buckets)

Algorithmic Bioinformatics 7

Encoding vs. Hashing

Encoding

Assign a unique integer in [0, 4k [to each k-mer (e.g., base-4 encoding).

Bijective map ΣDNA → {0, . . . , 4k − 1}.
Useful if n = Θ(4k): Size of pos: n; size of start: 4k .

Example: fa(x) := (a · enc(x)) mod 4k , with a odd, enc the base-4 encoding

Hashing

Any (non-bijective) function Σk → {0, . . . , p − 1} for integer p (address space).

Useful if n ≈ p � 4k (large k).

Disadvantages:
storage of k-mers in hash buckets
collisions
below 100% load (empty buckets)

Algorithmic Bioinformatics 7

Encoding vs. Hashing

Encoding

Assign a unique integer in [0, 4k [to each k-mer (e.g., base-4 encoding).

Bijective map ΣDNA → {0, . . . , 4k − 1}.
Useful if n = Θ(4k): Size of pos: n; size of start: 4k .

Example: fa(x) := (a · enc(x)) mod 4k , with a odd, enc the base-4 encoding

Hashing

Any (non-bijective) function Σk → {0, . . . , p − 1} for integer p (address space).

Useful if n ≈ p � 4k (large k).

Disadvantages:
storage of k-mers in hash buckets
collisions
below 100% load (empty buckets)

Algorithmic Bioinformatics 7

Encoding vs. Hashing

Encoding

Assign a unique integer in [0, 4k [to each k-mer (e.g., base-4 encoding).

Bijective map ΣDNA → {0, . . . , 4k − 1}.
Useful if n = Θ(4k): Size of pos: n; size of start: 4k .

Example: fa(x) := (a · enc(x)) mod 4k , with a odd, enc the base-4 encoding

Hashing

Any (non-bijective) function Σk → {0, . . . , p − 1} for integer p (address space).

Useful if n ≈ p � 4k (large k).

Disadvantages:
storage of k-mers in hash buckets
collisions
below 100% load (empty buckets)

Algorithmic Bioinformatics 7

Part II: How to Hash

Algorithmic Bioinformatics 8

Collision Resolution Strategies

Chaining (shown): use linked lists at each address

Open addressing with linear probing:
relocate colliding keys to following addresses

Open addressing with non-linear (quadratic) probing:
relocate colliding keys to other addresses, non-linearly

Double hashing: relocate colliding keys by linear probing
with different step sizes for each key

Cuckoo hashing: use two hash functions, move keys around

Robin Hood hashing: use linear probing,
move keys around such that each key stays close to its hash address

Requirements for Genome Analysis

Very fast lookup, i.e., very few random memory accesses.
Small size, i.e., high load factor, almost no empty space

Algorithmic Bioinformatics 9

Collision Resolution Strategies

Chaining (shown): use linked lists at each address

Open addressing with linear probing:
relocate colliding keys to following addresses

Open addressing with non-linear (quadratic) probing:
relocate colliding keys to other addresses, non-linearly

Double hashing: relocate colliding keys by linear probing
with different step sizes for each key

Cuckoo hashing: use two hash functions, move keys around

Robin Hood hashing: use linear probing,
move keys around such that each key stays close to its hash address

Requirements for Genome Analysis

Very fast lookup, i.e., very few random memory accesses.
Small size, i.e., high load factor, almost no empty space

Algorithmic Bioinformatics 9

(h, b) Cuckoo hashing

Use h hash functions

Store up to b elements at each position

... ...

Algorithmic Bioinformatics 10

(h, b) Cuckoo hashing

Use h hash functions

Store up to b elements at each position

1
2
h=3

... ...

Algorithmic Bioinformatics 10

(h, b) Cuckoo hashing

Use h hash functions

Store up to b elements at each position

... ...

Algorithmic Bioinformatics 10

(h, b) Cuckoo hashing

Use h hash functions

Store up to b elements at each position

#

+
load factor =

b

1
2
h=3

... ...

Algorithmic Bioinformatics 10

(h, b) Cuckoo Hashing: Insertion by Random Walk

Use h hash functions

Store up to b elements at each position

1
2
h=3

b... ...

Algorithmic Bioinformatics 11

(h, b) Cuckoo Hashing: Insertion by Random Walk

Use h hash functions

Store up to b elements at each position

1
2
h=3

b... ...

Algorithmic Bioinformatics 11

(h, b) Cuckoo Hashing: Insertion by Random Walk

Use h hash functions

Store up to b elements at each position

1
2
h=3

b... ...

Algorithmic Bioinformatics 11

(h, b) Cuckoo Hashing: Insertion by Random Walk

Use h hash functions

Store up to b elements at each position

1
2
h=3

b... ...

Algorithmic Bioinformatics 11

Properties of (h, b) Cuckoo Hashing

Small number of hash functions: h = 2, 3, 4

Number h limits random memory accesses (cache misses) per lookup

Higher h allow higher loads with same bucket size b

Bucket size b limits number of comparisons per bucket (fast anyway)

Higher bucket size allows higher loads

Use (2, 6) or (3, 4) in practice

Low loads: Many keys found at first choice (fast)

High loads: Frequently have to check 2nd/3rd choice (slower),
but less wasted space

Good load factors in practice: 0.85 to 0.95

Algorithmic Bioinformatics 12

Part III: Similarities and Distances

Algorithmic Bioinformatics 13

Similarity vs. Distance

Relationship

Similarity measures are usually the inverse of distance metrics and vice versa.

Hamming distance

P1 = ABCDE

P2 = ABDDE

d(P1,P2) = 1

d̂(P1,P2) = d(P1,P2)
` = 1

5 ,
with ` = ‖P1‖ = ‖P2‖

Hamming similarity

P1 = ABCDE

P2 = ABDDE

S(P1,P2) = 4

Ŝ(P1,P2) = S(P1,P2)
` = 4

5 ,
with ` = ‖P1‖ = ‖P2‖

Ŝ(P1,P2) = 1− d̂(P1,P2)

Algorithmic Bioinformatics 14

Similarity vs. Distance

Relationship

Similarity measures are usually the inverse of distance metrics and vice versa.

Hamming distance

P1 = ABCDE

P2 = ABDDE

d(P1,P2) = 1

d̂(P1,P2) = d(P1,P2)
` = 1

5 ,
with ` = ‖P1‖ = ‖P2‖

Hamming similarity

P1 = ABCDE

P2 = ABDDE

S(P1,P2) = 4

Ŝ(P1,P2) = S(P1,P2)
` = 4

5 ,
with ` = ‖P1‖ = ‖P2‖

Ŝ(P1,P2) = 1− d̂(P1,P2)

Algorithmic Bioinformatics 14

Similarity vs. Distance

Relationship

Similarity measures are usually the inverse of distance metrics and vice versa.

Hamming distance

P1 = ABCDE

P2 = ABDDE

d(P1,P2) = 1

d̂(P1,P2) = d(P1,P2)
` = 1

5 ,
with ` = ‖P1‖ = ‖P2‖

Hamming similarity

P1 = ABCDE

P2 = ABDDE

S(P1,P2) = 4

Ŝ(P1,P2) = S(P1,P2)
` = 4

5 ,
with ` = ‖P1‖ = ‖P2‖

Ŝ(P1,P2) = 1− d̂(P1,P2)

Algorithmic Bioinformatics 14

Similarity vs. Distance

Relationship

Similarity measures are usually the inverse of distance metrics and vice versa.

Hamming distance

P1 = ABCDE

P2 = ABDDE

d(P1,P2) = 1

d̂(P1,P2) = d(P1,P2)
` = 1

5 ,
with ` = ‖P1‖ = ‖P2‖

Hamming similarity

P1 = ABCDE

P2 = ABDDE

S(P1,P2) = 4

Ŝ(P1,P2) = S(P1,P2)
` = 4

5 ,
with ` = ‖P1‖ = ‖P2‖

Ŝ(P1,P2) = 1− d̂(P1,P2)

Algorithmic Bioinformatics 14

Distance Measures: `p Distances

Definition

In an n-dimensional real vector space, points are vectors of n real numbers.
For any constant p ≥ 1, we define the `p distance by

dp([x1, · · · , xn], [y1, · · · , yn]) =
(n∑

i=1

|xi − yi |p
)1/p

d2(x , y) =

√√√√ n∑
i=1

(xi − yi)2 d∞(x , y) = max
i=1,...,n

|xi − yi |

Algorithmic Bioinformatics 15

Distance Measure: Jaccard Similarity

Definition

Given two sets A and B, the Jaccard index or Jaccard similarity is defined as

J(A,B) =
|A ∩ B|
|A ∪ B|

.

ABA BA B A B=

0 ≤ J(A,B) ≤ 1

Algorithmic Bioinformatics 16

Distance Measure: Jaccard Similarity

Definition

Given two sets A and B, the Jaccard index or Jaccard similarity is defined as

J(A,B) =
|A ∩ B|
|A ∪ B|

.

Jaccard Distance

We define the Jaccard distance as

dJ(A,B) := 1− J(A,B) ,

which is a metric.

Algorithmic Bioinformatics 16

Reminder: Hamming Distance

Setting

Compare two strings s, t ∈ Σn of same length.

Definition

Given s, t ∈ Σn, we define the Hamming distance dH(s, t) as the number of positions
where s and t differ. In other words,

dH(s, t) :=
∣∣{i ∈ {0, . . . , n − 1} : s[i] 6= t[i]

}∣∣
Example

⇒ Hamming distance 2
Algorithmic Bioinformatics 17

Reminder: Edit Distance

Edit Operations

Replacement: C T G T A A T A C

C A G T A A T A C

Insertion: C T G T A A T A C

C T G T C A A T A C

Deletion: C T G T A A T A C

C T G T A T A C

Definition: edit distance

The edit distance of s and t is defined as the minimum number of edit operations
needed to turn s into t.

Algorithmic Bioinformatics 18

Problem: Finding Similar Items

Setting

Suppose U is a universe (set) of objects and d is a metric on U .

Problem

Given a set A ⊆ U , an item x , and ε > 0.
Find all items similar to x in A, i.e., all items e ∈ A such that d(e, x) < ε.

Näıve approach

1 def find_similar(A, x, eps):

2 for element in A:

3 if d(element , x) < eps:

4 yield element

Time complexity: O(|A| · dim U)

Algorithmic Bioinformatics 19

Problem: Finding Similar Items

Setting

Suppose U is a universe (set) of objects and d is a metric on U .

Problem

Given a set A ⊆ U , an item x , and ε > 0.
Find all items similar to x in A, i.e., all items e ∈ A such that d(e, x) < ε.

Näıve approach

1 def find_similar(A, x, eps):

2 for element in A:

3 if d(element , x) < eps:

4 yield element

Time complexity: O(|A| · dim U)

Algorithmic Bioinformatics 19

Part IV: Locality Sensitive Hashing

Algorithmic Bioinformatics 20

Hashing

Observation

Conventional hash functions are designed to
generate scattered hash values even for similar (not identical) items.

Argument

It is necessary:

Avoid collisions as much as possible,

Preserve constant time lookup operation in exact membership query.

Sought

Find a hashing technique to give two similar items an identical hash value.

Obvious transitivity problem!

Algorithmic Bioinformatics 21

Hashing

Observation

Conventional hash functions are designed to
generate scattered hash values even for similar (not identical) items.

Argument

It is necessary:

Avoid collisions as much as possible,

Preserve constant time lookup operation in exact membership query.

Sought

Find a hashing technique to give two similar items an identical hash value.
Obvious transitivity problem!

Algorithmic Bioinformatics 21

Locality Sensitive Hashing

Idea

Design hash functions that tend to assign
identical hash values for similar items a and b with high probability.

Collision: items may be similar.

Distinct hash values: items may also be similar ?!

Preprocessing

Compute hash value for each element in the set.

Put element in the corresponding bucket.

Querying

Compute the hash value for query item.

Compare the query item only with items in its corresponding bucket.

Algorithmic Bioinformatics 22

Locality Sensitive Hashing

1

8

Buckets

2
3
4
5
6
7

x5
x3

x2

x1
x4

Algorithmic Bioinformatics 23

Locality Sensitive Hashing

1

8

Buckets

2
3
4
5
6
7

h(x6) = 4

x2
collision

x5
x3

x6x2

x1
x4

Algorithmic Bioinformatics 23

Locality Sensitive Hashing

1

8

Buckets

2
3
4
5
6
7

h(x7) = 7

x2

collision

x5
x3

x6x2

x1
x4

x7

Algorithmic Bioinformatics 23

Locality Sensitive Hashing

Definition: Locality Sensitive Hashing

Let S be a similarity measure on space or universe U .
A set H of hash functions is locality sensitive for S if

Pr
h∈H

[h(x) = h(y)] = S(x , y) for all x , y ,

where the probability is taken over the distribution of hash functions.

Example: Hamming similarity

Consider the set of hash functions H = {Pi |i ∈ 1..n}, where Pi (s1s2 . . . sn) := si .
Then Pr[h(x) = h(y)] = SHamming(x , y).
Therefore H is a LS set of hash functions for SHamming.

Algorithmic Bioinformatics 24

LSH for Jaccard Similarity

SJ =
|A ∩ B|
|A ∪ B|

SJ(A,B) = 3
12 = 0.25

Idea

A bijective function π : U → [0, |U|[is a ranking (ordering) function of U .
The family H of hash functions

hπ(A) := min
x∈A

π(x) ,

where π ranges over all orderings of U , is locality sensitive for SJ .

Algorithmic Bioinformatics 25

LSH for Jaccard Similarity

SJ =
|A ∩ B|
|A ∪ B|

SJ(A,B) = 3
12 = 0.25

Idea

A bijective function π : U → [0, |U|[is a ranking (ordering) function of U .
The family H of hash functions

hπ(A) := min
x∈A

π(x) ,

where π ranges over all orderings of U , is locality sensitive for SJ .

Algorithmic Bioinformatics 25

Observations on Locality Sensitive Hashing

Observation I: Two different elements can collide

The same hash values can be assigned to very different elements
because of accidental collision.

Observation II: Two similar elements can be missed

Two similar elements can have different hash values.

Idea (amplification)

Use multiple hash functions,
hoping that all similar elements get identical value for at least one hash function.

Algorithmic Bioinformatics 26

Observations on Locality Sensitive Hashing

Observation I: Two different elements can collide

The same hash values can be assigned to very different elements
because of accidental collision.

Observation II: Two similar elements can be missed

Two similar elements can have different hash values.

Idea (amplification)

Use multiple hash functions,
hoping that all similar elements get identical value for at least one hash function.

Algorithmic Bioinformatics 26

Observations on Locality Sensitive Hashing

Observation I: Two different elements can collide

The same hash values can be assigned to very different elements
because of accidental collision.

Observation II: Two similar elements can be missed

Two similar elements can have different hash values.

Idea (amplification)

Use multiple hash functions,
hoping that all similar elements get identical value for at least one hash function.

Algorithmic Bioinformatics 26

Sketches

Definition

For an element x , a sketch for the LSH H is a vector [h1(x), h2(x), . . . , hr (x)],
where hash functions hi are selected from H according to a probability distribution.

Two benefits of sketches

1 Increased chance of finding a similar item
when searching with more hash functions

2 Estimation of similarity: |{i | hi (A) = hi (B)}|/r is an estimate of S(A,B):
Using only one hash function gives a high-variance estimator.
Using more hash functions gives higher precision.

Algorithmic Bioinformatics 27

Error Rates with Sketches (Several Hash Functions)

False negative errors decrease exponentially with r
False positive errors increase slowly linearly with r

Algorithmic Bioinformatics 28

Summary

Hashing

Alternative to classical k-mer index for large k

Requires a collision resolution strategy

Good in practice: (h, b) Cuckoo hashing:
several hash functions, buckets of size b

Locality Sensitive Hashing

Different similarity measures

Probability that hash values of x , y agree = similarity of x , y

sets of k-mers: Jaccard similarity

min hashing

amplification using several hash functions; sketches

Algorithmic Bioinformatics 29

Summary

Hashing

Alternative to classical k-mer index for large k

Requires a collision resolution strategy

Good in practice: (h, b) Cuckoo hashing:
several hash functions, buckets of size b

Locality Sensitive Hashing

Different similarity measures

Probability that hash values of x , y agree = similarity of x , y

sets of k-mers: Jaccard similarity

min hashing

amplification using several hash functions; sketches

Algorithmic Bioinformatics 29

Possible exam questions

How can a k-mer index be implemented?

What is the disadvantage of hash-based vs. encoding-based implementations?

How can k-mers be mapped bijectively to the integers 0, . . . , 4k − 1?

What are some common collision resolution strategies when hashing?

Explain (h, b) Cuckoo hashing

Why are the advantages and disadvantages of (h, b) Cuckoo hashing?

When is a set of hash functions “locality sensitive”?

Why is standard hashing usually not locality sensitive?

Explain min-hashing.

Why is min-hashing locality sensitive for the Jaccard similarity?

Algorithmic Bioinformatics 30

