OC) UNIVERSITAT S e e
[}
wmuw DES e @

L J -
1 ‘e ® ZENTRUM FUR
SAARLANDES soe ZBI &0 ornAT ik

Genome-Wide DNA Read Mapping
(or DNA Database Search)

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previously: Error Tolerant Pattern Matching
m Many online algorithms
m Index-based: Error-tolerant backward search (FM-index + NFA-like table)

Algorithmic Bioinformatics @

Overview

Previously: Error Tolerant Pattern Matching
m Many online algorithms
m Index-based: Error-tolerant backward search (FM-index + NFA-like table)

Today's Lecture: Genome-Wide DNA Sequence Search
m Read Mappers: bwa-sw, bwa-mem, bowtie2

m Seed-and-extend principle (anchors)

Algorithmic Bioinformatics @ 5 ZB

Read Mapping and DNA Database Search Problems

Reference

Reads

mapped Reads

Read Mapping
Find (possible) origin(s) of (short) piece of DNA (“read”) within genome;
Find (possible) origin(s) of parts of (long) piece of DNA within genome.

DNA Database Search
Find (parts of) DNA query in huge DNA database (NCBI GenBank)

vvvvvvvvvvv

Algorithmic Bioinformatics H@ S5 ZBL s

Reminder: Error Tolerant Backward Search
P = ACTGT,

T = AAAACGTACCTS,

Y ={A,C,G,T}:

k=0 [[0,11]]L)[[lo,u]]i)[[g,g]

=

!

A

b b \ b \
[1,5] [0,11] [7,7] [7.7] 7,71 [5, 5]
[6. 8] [1,5] [8, 8] [9.9]
[9,9] [6, 8] G 99 T C A
k<1 (10, 11] 8,8] 10, 11]
[9,9]
110, 11] L L L

Green edges: insertions

Black edges: matches (horizontal) and mismatches (diagonal)

"
m Red edges (¢): deletions
"
"

Note: numbers for illustration only, not necessarily correct.

Algorithmic Bioinformatics

KKKKKKK

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

Algorithmic Bioinformatics

AAAAAAAAAA

o

0 NO Ok W = O

ct & & & O P P LH

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

O PP M P Attt |

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

Algorithmic Bioinformatics

o

0 NO Ok W = O

...........
o

ct & O P P P A

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

O P P P Attt |

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

Algorithmic Bioinformatics

io
W N WN - O

o

...........
o

ct c O P P P A

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

O P P P Attt |

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

o

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

T,
0 ~NO Ol b W N+~ O

ct & O P P P A
O PP P P Attt |

Algorithmic Bioinformatics 1 TR

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

o

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

K] Kk
T

K

ct o O P P P A
O PP P P Attt |

Algorithmic Bioinformatics @ TR s,

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

o

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

O P M P At |

=]
)
T
0 ~NO O dd W N - O

ct o O P P P A

Algorithmic Bioinformatics @ TR s,

Running time of Approximate Backward Search

(with NFA states or by branching on-the-fly)

Worst case
m All strings in edit/Hamming neighborhood are enumerated, i.e. the set

(P e £ |d(P,P') < K},

where P € ¥ is the pattern and k a distance threshold.
m = Running time is exponential in k in the worst case.

m In practice, it might be less bad, depending on the string that is searched.

Algorithmic Bioinformatics H@ inawors S5 ZBL s

Getting the Actual Positions of Matches

=)
Ao
W ~NOoO U A WN RO

K

C ct cta

Algorithmic Bioinformatics

t c o & 0O P P p AT

ctatata
t$ctata
tat$cta
tatat$c
tatatat
$ctatat
at$ctat
atat$ct
atatat$

O P P P H |

...........

Question

Given: interval on BWT
Sought: position of matches in
original string

Answer
Use (sparse) suffix array pos

,'-"-k‘ ZENTRUM FUR
728 ZBI §ioNihiatic

Alternative: Branch on Suffix Tree (Forward Search)

Examples (Hamming distance 1 for simplicity): (1) acc, (2) bab

Algorithmic Bioinformatics

Approaches in Practice

m Suffix tree (forward search) not used: memory footprint too large

m NFA states not used (memory overhead)

Algorithmic Bioinformatics 1 E

Approaches in Practice

Suffix tree (forward search) not used: memory footprint too large
NFA states not used (memory overhead)

bwa-sw: approximate backward search with branching on-the-fly,
intervals examined using depth-first search.

bwa-sw starts at several locations in the read (local matches),
allows for smaller edit distance thresholds

bwa-sw collects a large number of intervals first,
then performs batch lookup in suffix array

Literature: bwa-sw

Heng Li & Richard Durbin:

Fast and accurate short read alignment with Burrows—Wheeler transform.
Bioinformatics 25(14):1754-1760 (2009).

Algorithmic Bioinformatics @5 3 ZBI s

Algorithmic Bioinformatics

Seed and Extend ldea for
Filter-based Approaches

10

Motivation

Branching on errors is computationally expensive
® Running time exponential in the number of errors

m Exact matches are inexpensive to compute
m ldea: Find exact matches

m of fixed length g (g-grams) or k (k-mers)
m of maximal length (MEMs, maximal exact matches) using FM-index

m Then perform anchored local alignment around the match (seed).

Algorithmic Bioinformatics Hﬁ]?’fi ~~~~~~~ S ZBUE 11

Motivation

Branching on errors is computationally expensive
® Running time exponential in the number of errors
m Exact matches are inexpensive to compute

m ldea: Find exact matches

m of fixed length g (g-grams) or k (k-mers)
m of maximal length (MEMs, maximal exact matches) using FM-index

m Then perform anchored local alignment around the match (seed).

Literature: bwa-mem

Heng Li:
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
arXiv:1303.3997 [g-bio.GN]

58 ZBIEN 11

Algorithmic Bioinformatics [ﬁn

Pigeon Hole Principle, Seed and Extend

Example
When we allow a read to contain up to 1 error, the following scenarios are possible:

C |) GE—1) ([

No error Error left Error right

Algorithmic Bioinformatics [ﬁn Sinocs S ZBUE 12

Pigeon Hole Principle, Seed and Extend

Example

When we allow a read to contain up to 1 error, the following scenarios are possible:

C |) GE—1) ([

No error Error left Error right

More than one error?
Pigeon hole principle holds for d > 1 errors:
m Cut pattern into d + 1 parts

m Then, at least one part without error has to exist.

Algorithmic Bioinformatics

12

Pigeon Hole Principle, Seed and Extend

Example
When we allow a read to contain up to 1 error, the following scenarios are possible:

C |) GE—1) ([

No error Error left Error right

More than one error?
Pigeon hole principle holds for d > 1 errors:
m Cut pattern into d + 1 parts

m Then, at least one part without error has to exist.

Seed and Extend
m Seed: Find origins of exact match

m Extend: Continue search allowing err
Algorithmic Bioinformatics

around exact match
] S5 ZBLE 12

Approximate Pattern Matching

[

P (ACCCGGTCCTG-CCCGCGACTGGACTTCAC)

R D R |

CCGGACCCGCTCCTGCCCCGCGTCTGGA-TTCACTATT

Algorithmic Bioinformatics @] e 5 ZB B

13

Approximate Pattern Matching

[

P (ACCCGGTCCTG-CCCGCGACTGGACTTCAC)

R D R |

CCGGACCCGCTCCTGCHYelJe TCTGGA-TTCACTATT

.
L1/(d+1)]

Algorithmic Bioinformatics @] e 5 ZB B

d

13

Approximate Pattern Matching

kK kK k kK k

P (ACCCGGTCCTG-CCCGCGACTGGACTTCAC)

R D R |

CCGGACCCGCTCCTGCHYelJe TCTGGA-TTCACTATT

.
k=11/(d+1)]

Algorithmic Bioinformatics @] 5 ZB B

13

Approximate Pattern Matching

kK kK k kK k

P (ACCCGGTCCTG-CCCGCGACTGGACTTCAC)

R D R I d

CCGGACCCGCTCCTGCHYelJe TCTGGA-TTCACTATT

.
k=11/(d+1)]

Seed-and-extend strategy

Algorithmic Bioinformatics @] 2 ZBU 13

Bowtie

Implementation of seed-extend in bowtie
m Use two indexes: for searching forward/backward, respectively
m Seed: search for left/right half without errors using FM index

m Extend: continue search using branching in FM index

Algorithmic Bioinformatics ﬂﬁ,ﬂ

P53 ZBI N

14

Bowtie

Implementation of seed-extend in bowtie
m Use two indexes: for searching forward/backward, respectively
m Seed: search for left/right half without errors using FM index

m Extend: continue search using branching in FM index

Variants used in other read mappers or search tools
m seed phase using index, extend phase using alignment

m multiple seeds, then alignment

Algorithmic Bioinformatics ﬂﬁﬂ Hieumoss

P53 ZBI R

14

Abstraction: Filter-based approximate search

\ S

!

E Filter

Criterion

filtration phase

/Nolential matches
3 S N

E Conventional

Algorithm

verification phase

rue matches

t
| -

[Stefan Burkhardt, Ph.D. Thesis 2002]

Algorithmic Bioinformatics Hﬁ]

73S ZBIENT

15

Filter-based Search

A filter restricts the expensive verification to promising regions of the target sequence.
m A lossy filter may miss true matches in the target.
m A lossless filter contains all true matches.

A good filter always balances sensitivity and speed.

true match true match
e [~
I(f;:téiiitiralse ’ [‘ ’ ‘ [
Negatives)
Lossless filter ’l:l ‘ ’ ‘ ’ E‘

Algorithmic Bioinformatics Hﬁﬂ Sinocs S5 ZBUE

16

Definitions

g-gram
A g-gram of a string s is a substring of length g of s.

Matching Problem

Given a reference text T and a query string s,
the approximate matching problem with d differences and window length w

consists of finding a pair of substrings (s[i...i + w — 1], t) such that
W s[i,i +w — 1] is a length-w substring of s, and t is a substring of T,
2 degit(s[i-.. 71+ w —1],t) < d, i.e, edit distance is at most d.

Algorithmic Bioinformatics Hﬁ] Sinocs S ZBUE

17

@-gram lemma

Lemma
Let an occurrence of s[i,i + w — 1] with at most d differences end at position j in T.

Then at least w + 1 — (d + 1)q g-grams of s[i,i +w — 1] occur in T[j —w + 1, /].

Algorithmic Bioinformatics

18

@-gram lemma

Lemma
Let an occurrence of s[i,i + w — 1] with at most d differences end at position j in T.
Then at least w + 1 — (d + 1)q g-grams of s[i,i +w — 1] occur in T[j —w + 1, /].

Proof
m each error destroys at most g g-grams (Y positions below)

m the last ¢ — 1 positions have no g-grams (X positions below)
intact g-grams: w —dg— (g —1)=w+1—(d+1)q

m Example: ¢g=3 (valid positions of 3-grams are M below)
target ATTGACAC
query ATTCACAC
3-grams MYYYMMXX

Algorithmic Bioinformatics

18

QUASAR algorithm

Task: Find approximate matches of s in T

Seed-and-extend based on g-gram lemma

1

2
3
4

Pre-compute the threshold « for a window of length w using the g-gram lemma.
Partition T into blocks (larger than window length w)
Count all g-grams in s[1...w] for each block along T

Each block that contains an approximate match has a counter of at least .
(The reverse is not true. We may have false positive blocks)

Advance the window in s from s[i...j]tos[i+1...j+1]

Algorithmic Bioinformatics [ﬁn Sinocs 2 ZBU 19

QUASAR - counting g-grams

In order to count the g-gram matches in a window, we need an efficient data structure.

In order to count the g-gram matches in a window, we need an efficient data structure.
The g-gram index:

2 Construct the suffix array pos of T
21 Create a table of size |X|9 that maps a g-gram to its starting rank in pos,
to allow constant time lookup.

3l g-grams are integer-encoded as numbers 0...|X|9 — 1,
e.g. DNA: TTGCCA = (332110)4 = 3988 (base-4 number)

F58 ZBLES 20

Algorithmic Bioinformatics

QUASAR - Blockwise counting

m Keeping a counter for each possible window of length w of the text
would lead to a huge array of size O(|T|)

m To save space, we define two arrays of blocks of size b > 2w.
The first block array is shifted by b/2 positions against the second.

true match true match

-

Algorithmic Bioinformatics 1 7B .

21

QUASAR - Efficient counting and shifting

When the query window s[i ...] is moved to s[i +1...j+ 1],
the only difference for the block counters are two g-grams,
one that leaves (blue) and one that enters the window (red).

i J
ACTGTAAGAT

Algorithmic Bioinformatics ﬂ@] Hieumoss

22

QUASAR - Efficient counting and shifting

When the query window s[i ...] is moved to s[i +1...j+ 1],
the only difference for the block counters are two g-grams,
one that leaves (blue) and one that enters the window (red).

i J
ACTGTAAGAT

So for each shift update, change the block counters as follows:

m subtract the count of the leading g-gram (blue) from blocks,
unless the block counter is > « (lock-in)

® add a count to all blocks that contain the trailing g-gram (red)

Algorithmic Bioinformatics o s

22

Gapped g-Grams

Definition
Gapped g-grams are specified with a mask, a string of
m # characters denote required matches

m . characters denote “don't care” positions

For example ##.#.# denotes a gapped 4-gram of span (length) 6.

Algorithmic Bioinformatics

23

Gapped g-Grams

Definition

Gapped g-grams are specified with a mask, a string of
m # characters denote required matches
m . characters denote “don't care” positions

For example ##.#.# denotes a gapped 4-gram of span (length) 6.
m Gapped g-grams can improve the filter efficiency by orders of magnitude.

m The g-gram lemma is not tight for gapped g-grams and there is no closed formula
for computing the threshold for a given edit distance d.

Algorithmic Bioinformatics @] Sinocs S5 ZBUE 23

Gapped Q-Grams: Example

w=11, k=3 ### it 7
HEENIENTEE HENIEEI N
[Ix] [[
[T] [X
XL] [Ix] [
[Ix] XIx] []
[T] L] [
XL L] [
[Ix] [Ix] [
[IxI]] [
XL 1]

[Stefan Burkhardt and Juha Karkkainen, Fundamenta Informaticae, 2003]

Algorithmic Bioinformatics s 7B .

SWIFT algorithm: Parallelograms instead of blocks

Slide length-w window over query, count g-grams in diagonals

—> subject ctA

“ N \F,—\\\\ \\\\ \\\
\ \\ \\
N \\\
N
b AN
— subject ta
| NONN AR Y
N\ \\ \\
AN \\
AN
i AN

Algorithmic Bioinformatics

vvvvvvvvvvv

Kionb =

fionb =

—= subject

AN \ \\\ \\\ \\\
N \\ N \\
AN
N N N
—> subject AN
AN \\\ N\
\\\\\\ \\\ \ N
N \ \\\: i\ \\\
\\ NN\
\N
NS N
B,

25

SWIFT - Examples

sequence 1

for
N2

~

=

e

sequence 2

from Kehr, Weese, Reinert, BMC Bioinformatics 2011

Algorithmic Bioinformatics

UNIVERSITAT
oEs
SARRLANDES

#7zB1

ZENTRUM FOR
BIDINFORMATIK

26

Other Tools

There are a number of read mappers that were made for the analysis of
next-generation sequencing reads against large genomes and use variants of filter
algorithms with g-grams

= RMAP
m RazerS and RazerS3
m Hobbes

= GEM

m Stellar

n

and many more

Algorithmic Bioinformatics @] Sinocs S ZBUE

Literature

m Q-gram Based Database Searching Using a Suffix Array (QUASAR).
Burkhardt et al., RECOMB 1999

m Efficient g-Gram Filters for Finding All e-Matches over a Given Length.
Rasmussen, Stoye, Myers, Journal of Computational Biology, 2006

m Better filtering with gapped g-grams.
Stefan Burkhardt and Juha Karkkainen, Fundamenta Informaticae, 2003

vvvvvvvvvvv

Algorithmic Bioinformatics @] Sinocs S ZBUE

28

Summary

Approximatie pattern matching with index

NFA or branching on FM index

Branching on suffix tree

Examples: bwa-sw

Seed-extend principle: avoid branching by using exact matches
Examples: bwa-mem, bowtie

g-gram lemma

Fast g-gram access: g-gram index

Filtration approaches (QUASAR, SWIFT)

Idea of gapped g-grams

Algorithmic Bioinformatics ﬂ@] Hieumoss

29

Possible Exam Questions

How can a suffix tree be used to search for approximate pattern occurrences?
What is the resulting running time?
What is the benefit of using an FM index instead of a suffix tree?

Explain approximate search on an FM index by means of an example.

[
[
[
[
m What's the main idea behind the “seed and extend” paradigm?
m What is the purpose of a filter?

m What is a lossy vs. a lossless filter?

m Explain the g-gram lemma.

m What is a g-gram index? How is it related to the suffix array?

[

What is the idea of gapped g-grams?

Algorithmic Bioinformatics [ﬁﬂ < 2 ZBU

30

