
Extensions and Improvements
of Pairwise Sequence Alignment

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previously: Pairwise Sequence Alignment

Four variants: global, semiglobal, overlapping, local

Theory of score matrices

Local alignment statistics

Today’s Lecture: Extensions and Improvements

Generalizing gap cost functions (especially affine gap costs)

Alignments with anchor points

Linear-space alignment (with traceback): Hirschberg’s technique

Conceptual problems with local alignments

Alternative: Length-normalized alignments

Algorithmic Bioinformatics 2

Overview

Previously: Pairwise Sequence Alignment

Four variants: global, semiglobal, overlapping, local

Theory of score matrices

Local alignment statistics

Today’s Lecture: Extensions and Improvements

Generalizing gap cost functions (especially affine gap costs)

Alignments with anchor points

Linear-space alignment (with traceback): Hirschberg’s technique

Conceptual problems with local alignments

Alternative: Length-normalized alignments

Algorithmic Bioinformatics 2

Affine Gap Costs

Algorithmic Bioinformatics 3

On the Distribution of Gaps

Gaps are insertions or deletions.

Until now, a gap of length ` incurred a (negative) score of g(`) = −γ · `,
where γ ≥ 0 is the gap penalty.

Linear gap costs are not realisitic for biological sequences.
attccgacagaaagatac attccgacagaaagatac

att-c--c-g----atac attccg--------atac
vs.

Opening a gap should be more expensive than extending a gap:
results in fewer, but longer gaps.

Algorithmic Bioinformatics 4

On the Distribution of Gaps

Gaps are insertions or deletions.

Until now, a gap of length ` incurred a (negative) score of g(`) = −γ · `,
where γ ≥ 0 is the gap penalty.

Linear gap costs are not realisitic for biological sequences.
attccgacagaaagatac attccgacagaaagatac

att-c--c-g----atac attccg--------atac
vs.

Opening a gap should be more expensive than extending a gap:
results in fewer, but longer gaps.

Algorithmic Bioinformatics 4

Gap Costs

Special and general gap cost functions

Linear gap costs: g(`) = −γ · `
Affine gap costs: g(`) = −c − γ(`− 1)

Convex gap costs: general but convex g(`)

General gap costs: general function g(`)

Parameters for affine gap costs

`: gap (=indel) length

γ: gap extension penalty

c: gap open penalty; assume c ≥ γ > 0

How does generalizing the gap cost function affect the running time ?

Algorithmic Bioinformatics 5

Gap Costs

Special and general gap cost functions

Linear gap costs: g(`) = −γ · `
Affine gap costs: g(`) = −c − γ(`− 1)

Convex gap costs: general but convex g(`)

General gap costs: general function g(`)

Parameters for affine gap costs

`: gap (=indel) length

γ: gap extension penalty

c: gap open penalty; assume c ≥ γ > 0

How does generalizing the gap cost function affect the running time ?

Algorithmic Bioinformatics 5

Global Alignment with Affine Gap Costs

Goal: Algorithm for affine gap costs with running time O(mn)
(same as for linear gap costs; more general models are more expensive!)

Idea: Different types of (conditional) scores, similar to (DFA) states

S [i , j] := max
{
score(A) | A is alignment of s[: i] and t[: j]

}
.

V [i , j] := max

{
score(A) | A is alignment of s[: i] and t[: j]

ending with a gap (–) in t

}
,

H[i , j] := max

{
score(A) | A is alignment of s[: i] und t[: j]

ending with a gap (–) in s

}
.

V [i , j] = max
{
S [i − 1, j]− c , V [i − 1, j]− γ

}
,

H[i , j] = max
{
S [i , j − 1]− c , H[i , j − 1]− γ

}
,

S [i , j] = max
{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
.

Algorithmic Bioinformatics 6

Global Alignment with Affine Gap Costs

Goal: Algorithm for affine gap costs with running time O(mn)
(same as for linear gap costs; more general models are more expensive!)

Idea: Different types of (conditional) scores, similar to (DFA) states

S [i , j] := max
{
score(A) | A is alignment of s[: i] and t[: j]

}
.

V [i , j] := max

{
score(A) | A is alignment of s[: i] and t[: j]

ending with a gap (–) in t

}
,

H[i , j] := max

{
score(A) | A is alignment of s[: i] und t[: j]

ending with a gap (–) in s

}
.

V [i , j] = max
{
S [i − 1, j]− c , V [i − 1, j]− γ

}
,

H[i , j] = max
{
S [i , j − 1]− c , H[i , j − 1]− γ

}
,

S [i , j] = max
{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
.

Algorithmic Bioinformatics 6

Global Alignment with Affine Gap Costs

Goal: Algorithm for affine gap costs with running time O(mn)
(same as for linear gap costs; more general models are more expensive!)

Idea: Different types of (conditional) scores, similar to (DFA) states

S [i , j] := max
{
score(A) | A is alignment of s[: i] and t[: j]

}
.

V [i , j] := max

{
score(A) | A is alignment of s[: i] and t[: j]

ending with a gap (–) in t

}
,

H[i , j] := max

{
score(A) | A is alignment of s[: i] und t[: j]

ending with a gap (–) in s

}
.

V [i , j] = max
{
S [i − 1, j]− c , V [i − 1, j]− γ

}
,

H[i , j] = max
{
S [i , j − 1]− c , H[i , j − 1]− γ

}
,

S [i , j] = max
{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
.

Algorithmic Bioinformatics 6

Global Alignment with Affine Gap Costs

Goal: Algorithm for affine gap costs with running time O(mn)
(same as for linear gap costs; more general models are more expensive!)

Idea: Different types of (conditional) scores, similar to (DFA) states

S [i , j] := max
{
score(A) | A is alignment of s[: i] and t[: j]

}
.

V [i , j] := max

{
score(A) | A is alignment of s[: i] and t[: j]

ending with a gap (–) in t

}
,

H[i , j] := max

{
score(A) | A is alignment of s[: i] und t[: j]

ending with a gap (–) in s

}
.

V [i , j] = max
{
S [i − 1, j]− c , V [i − 1, j]− γ

}
,

H[i , j] = max
{
S [i , j − 1]− c , H[i , j − 1]− γ

}
,

S [i , j] = max
{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
.

Algorithmic Bioinformatics 6

Global Alignment with Affine Gap Costs

Initialization

S [0, 0] = 0,

S [i , 0] = V [i , 0] = g(i) for all 1 ≤ i ≤ m,

S [0, j] = H[0, j] = g(j) for all 1 ≤ j ≤ n,

H[i , 0] = −∞ for all 0 ≤ i ≤ m,

V [0, j] = −∞ for all 0 ≤ j ≤ n.

Traceback

In principle unchanged, may want to consider more cases:
S [i , j] = max

{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
{ ↖ , ↑ , ← }

Cost: Constant factor (×3) for time and memory

Algorithmic Bioinformatics 7

Global Alignment with Affine Gap Costs

Initialization

S [0, 0] = 0,

S [i , 0] = V [i , 0] = g(i) for all 1 ≤ i ≤ m,

S [0, j] = H[0, j] = g(j) for all 1 ≤ j ≤ n,

H[i , 0] = −∞ for all 0 ≤ i ≤ m,

V [0, j] = −∞ for all 0 ≤ j ≤ n.

Traceback

In principle unchanged, may want to consider more cases:
S [i , j] = max

{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
{ ↖ , ↑ , ← }

Cost: Constant factor (×3) for time and memory

Algorithmic Bioinformatics 7

Global Alignment with Affine Gap Costs

Initialization

S [0, 0] = 0,

S [i , 0] = V [i , 0] = g(i) for all 1 ≤ i ≤ m,

S [0, j] = H[0, j] = g(j) for all 1 ≤ j ≤ n,

H[i , 0] = −∞ for all 0 ≤ i ≤ m,

V [0, j] = −∞ for all 0 ≤ j ≤ n.

Traceback

In principle unchanged, may want to consider more cases:
S [i , j] = max

{
S [i − 1, j − 1] + score(s[i − 1], t[j − 1]), V [i , j], H[i , j]

}
{ ↖ , ↑ , ← }

Cost: Constant factor (×3) for time and memory

Algorithmic Bioinformatics 7

Side Note: Gap Shifting

ACCATGGCTGTCCGCCCGGCCGGCCGGAGACGAGAT
repeat unit

deletions leading to same product

Lemma: Gap Shifting

Let s ∈ Σ∗ contain a substring r ∈ Σ∗ that is repeated k times in tandem,
i.e., rk is a substring of s with rk = s[i . . . i + |r |k − 1] for some i .
Then, deleting any length-|r | substring from s within the interval yields the same result.

Algorithmic Bioinformatics 8

(Global) Alignment with Anchor Points

Algorithmic Bioinformatics 9

Global Alignments with Anchor Points

Question

Find the best alignment whose path contains node (i , j) in the alignment graph.

If (i , j) is not on a globally optimal path anyway,
then such an alignment is suboptimal overall.

Solution

Compute two partial alignments, add their scores:

(0, 0)→ (i , j) and (i , j)→ (m, n).

Scaling?

Solve this problem for all (i , j) simultaneously.

Iterating over the anchor point (i , j) yields total running time of O(m2 n2).

Can we do it faster?

Algorithmic Bioinformatics 10

Global Alignments with Anchor Points

Question

Find the best alignment whose path contains node (i , j) in the alignment graph.

If (i , j) is not on a globally optimal path anyway,
then such an alignment is suboptimal overall.

Solution

Compute two partial alignments, add their scores:

(0, 0)→ (i , j) and (i , j)→ (m, n).

Scaling?

Solve this problem for all (i , j) simultaneously.

Iterating over the anchor point (i , j) yields total running time of O(m2 n2).

Can we do it faster?

Algorithmic Bioinformatics 10

Global Alignments with Anchor Points

Question

Find the best alignment whose path contains node (i , j) in the alignment graph.

If (i , j) is not on a globally optimal path anyway,
then such an alignment is suboptimal overall.

Solution

Compute two partial alignments, add their scores:

(0, 0)→ (i , j) and (i , j)→ (m, n).

Scaling?

Solve this problem for all (i , j) simultaneously.

Iterating over the anchor point (i , j) yields total running time of O(m2 n2).

Can we do it faster?

Algorithmic Bioinformatics 10

Global Alignments with Anchor Points

Improvement

Optimal scores (0, 0)→ (i , j) for all (i , j) already exist: S [i , j]

Scores (i , j)→ (m, n) are scores (0, 0)→ (m − i , n − j) of the reverse strings.

Consider matrix R[i , j] with optimal scores (m, n)→ (i , j) (backwards)

Careful with indexing!

Then, sum (S + R)[i , j] holds optimal score of all paths through (i , j)

Algorithmic Bioinformatics 11

Global Alignments with Anchor Points

Improvement

Optimal scores (0, 0)→ (i , j) for all (i , j) already exist: S [i , j]

Scores (i , j)→ (m, n) are scores (0, 0)→ (m − i , n − j) of the reverse strings.

Consider matrix R[i , j] with optimal scores (m, n)→ (i , j) (backwards)

Careful with indexing!

Then, sum (S + R)[i , j] holds optimal score of all paths through (i , j)

Algorithmic Bioinformatics 11

Example

s = andi and t = handy.

ε h a n d y

ε 0 -1 -2 -3 -4 -5
a -1 -1 0 -1 -2 -3
n -2 -2 -1 1 0 -1
d -3 -3 -2 0 2 1
i -4 -4 -3 -1 1 1

1 2 0 -2 -4 -4 a

-1 0 1 -1 -3 -3 n

-3 -2 -1 0 -2 -2 d

-5 -4 -3 -2 -1 -1 i

-5 -4 -3 -2 -1 0 ε

h a n d y ε

↘ + ↙
1 1 -2 -5 -8 -9
-2 -1 1 -2 -5 -6
-5 -4 -2 1 -2 -3
-8 -7 -5 -2 1 0
-9 -8 -6 -3 0 1

Algorithmic Bioinformatics 12

Example

s = andi and t = handy.

ε h a n d y

ε 0 -1 -2 -3 -4 -5
a -1 -1 0 -1 -2 -3
n -2 -2 -1 1 0 -1
d -3 -3 -2 0 2 1
i -4 -4 -3 -1 1 1

1 2 0 -2 -4 -4 a

-1 0 1 -1 -3 -3 n

-3 -2 -1 0 -2 -2 d

-5 -4 -3 -2 -1 -1 i

-5 -4 -3 -2 -1 0 ε

h a n d y ε
↘ + ↙

1 1 -2 -5 -8 -9
-2 -1 1 -2 -5 -6
-5 -4 -2 1 -2 -3
-8 -7 -5 -2 1 0
-9 -8 -6 -3 0 1

Algorithmic Bioinformatics 12

Linear Space Alignment

Algorithmic Bioinformatics 13

Motivation: Linear Space Alignment

Pairwise alignment of two sequences s ∈ Σm and t ∈ Σn takes O(nm) time and space.

Example

Imagine n = m = 3 · 106 (small bacterial genomes)

The DP matrix would need 4nm = 36 · 1012 = 36T bytes

Assuming you can compute 1G table entries per second, you need around 2.5h.

⇒ Time requirement much more manageable than memory requirement

Question

Can we be more memory efficient while being (almost) as fast?

Algorithmic Bioinformatics 14

Global Alignment in Linear Space

We can compute the optimal alignment score in O(min(m, n)) space.

However, for the optimal alignment (traceback), we so far need O(mn) space.

Daniel S. Hirschberg (1975) proposed an idea that avoids storing entire matrices,
and reduces the space requirement to O(m + n).

The running time stays O(mn); in practice, it doubles.

Main Idea

Find out through which node (i∗, n/2) the optimal path runs.
For known i∗, the problem then reduces to two smaller alignment problems:
upper left, lower right (“Divide-and-Conquer strategy”).

Algorithmic Bioinformatics 15

Global Alignment in Linear Space

We can compute the optimal alignment score in O(min(m, n)) space.

However, for the optimal alignment (traceback), we so far need O(mn) space.

Daniel S. Hirschberg (1975) proposed an idea that avoids storing entire matrices,
and reduces the space requirement to O(m + n).

The running time stays O(mn); in practice, it doubles.

Main Idea

Find out through which node (i∗, n/2) the optimal path runs.
For known i∗, the problem then reduces to two smaller alignment problems:
upper left, lower right (“Divide-and-Conquer strategy”).

Algorithmic Bioinformatics 15

Global Alignment in Linear Space

We can compute the optimal alignment score in O(min(m, n)) space.

However, for the optimal alignment (traceback), we so far need O(mn) space.

Daniel S. Hirschberg (1975) proposed an idea that avoids storing entire matrices,
and reduces the space requirement to O(m + n).

The running time stays O(mn); in practice, it doubles.

Main Idea

Find out through which node (i∗, n/2) the optimal path runs.
For known i∗, the problem then reduces to two smaller alignment problems:
upper left, lower right (“Divide-and-Conquer strategy”).

Algorithmic Bioinformatics 15

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

r

s

()

Algorithmic Bioinformatics 16

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

6
5
6
6
7
6
5
5
4
3
4
4
3
2
1
0

r

s

Align forward columns 0..n/2

Algorithmic Bioinformatics 16

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

6
5
6
6
7
6
5
5
4
3
4
4
3
2
1
0

5
6
7
8
8
7
6
5
5
5
4
5
6
5
4
3

r

s

Align backwards columns n..n/2

Algorithmic Bioinformatics 16

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

6
5
6
6
7
6
5
5
4
3
4
4
3
2
1
0

5
6
7
8
8
7
6
5
5
5
4
5
6
5
4
3

r

s

Find node (i∗, n/2) with highest score in column n/2:
node is part of optimal alignment

Algorithmic Bioinformatics 16

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

r

s

Recurse: Find sub-alignments (0, 0)→ (i∗, n/2) and (i∗, n/2)→ (m, n)

Algorithmic Bioinformatics 16

Hirschberg’s Algorithm

Division into two subproblems:

0 n
0

m

r

s

Divide and recurse further until one string has length 1

Algorithmic Bioinformatics 16

Analysis of Hirschberg’s Algorithm

Space

Optimal path is determined from the center outward. Space: O(m + n)

Space for score values: O(min(m, n)) or O(m + n)

Total space: O(m + n)

Time

In the first iteration, alignments (0, 0)→ (m, n/2) and (0, n/2)← (m, n)
are computed: O(mn) time

After each iteration, half of the remaining matrix is removed.

Total running time: O(mn) · (1 + 1/2 + 1/4 + . . .) ≤ 2 · O(mn) = O(mn)

Algorithmic Bioinformatics 17

Analysis of Hirschberg’s Algorithm

Space

Optimal path is determined from the center outward. Space: O(m + n)

Space for score values: O(min(m, n)) or O(m + n)

Total space: O(m + n)

Time

In the first iteration, alignments (0, 0)→ (m, n/2) and (0, n/2)← (m, n)
are computed: O(mn) time

After each iteration, half of the remaining matrix is removed.

Total running time: O(mn) · (1 + 1/2 + 1/4 + . . .) ≤ 2 · O(mn) = O(mn)

Algorithmic Bioinformatics 17

Analysis of Hirschberg’s Algorithm

Space

Optimal path is determined from the center outward. Space: O(m + n)

Space for score values: O(min(m, n)) or O(m + n)

Total space: O(m + n)

Time

In the first iteration, alignments (0, 0)→ (m, n/2) and (0, n/2)← (m, n)
are computed: O(mn) time

After each iteration, half of the remaining matrix is removed.

Total running time: O(mn) · (1 + 1/2 + 1/4 + . . .) ≤ 2 · O(mn) = O(mn)

Algorithmic Bioinformatics 17

Analysis of Hirschberg’s Algorithm

Space

Optimal path is determined from the center outward. Space: O(m + n)

Space for score values: O(min(m, n)) or O(m + n)

Total space: O(m + n)

Time

In the first iteration, alignments (0, 0)→ (m, n/2) and (0, n/2)← (m, n)
are computed: O(mn) time

After each iteration, half of the remaining matrix is removed.

Total running time: O(mn) · (1 + 1/2 + 1/4 + . . .) ≤ 2 · O(mn) = O(mn)

Algorithmic Bioinformatics 17

Summary: Hirschberg’s Algorithm

With Hirschberg’s technique (divide-and-conquer, inside-out computation),
we can determine an optimal global alignment in time O(m + n).

Asymptotic running time remains O(mn), and doubles in practice.

Different alignment variants than global may use this technique,
if we first determine the endpoints of the optimal alignment;
Then: global alignment within its “box”.
Same time and space.

Algorithmic Bioinformatics 18

Summary: Hirschberg’s Algorithm

With Hirschberg’s technique (divide-and-conquer, inside-out computation),
we can determine an optimal global alignment in time O(m + n).

Asymptotic running time remains O(mn), and doubles in practice.

Different alignment variants than global may use this technique,
if we first determine the endpoints of the optimal alignment;
Then: global alignment within its “box”.
Same time and space.

Algorithmic Bioinformatics 18

Problems with Local Alignment and Alternatives

Algorithmic Bioinformatics 19

Conceptual Problems with Local Alignment

Score-based local alignment is widely used to discover regions of similarity
between sequences (often proteins).

The additive score function (alignment score = sum of scores over alignment
columns) allows for efficient computation via DP:

score(A) :=
∑

0≤i<|A|

score(Ai)

However, additivity also leads to two problems:

1 shadow effect
2 mosaic effect

Algorithmic Bioinformatics 20

Conceptual Problems with Local Alignment

Score-based local alignment is widely used to discover regions of similarity
between sequences (often proteins).

The additive score function (alignment score = sum of scores over alignment
columns) allows for efficient computation via DP:

score(A) :=
∑

0≤i<|A|

score(Ai)

However, additivity also leads to two problems:

1 shadow effect
2 mosaic effect

Algorithmic Bioinformatics 20

Conceptual Problems with Local Alignment

Definition (Shadow Effect)

Longer alignments with many differences may get higher scores than (“shadow”)
shorter more exact alignments, even though the shorter alignment may be more
interesting biologically.

length
50

︷
︸︸

︷
90

length
32

︷ ︸︸ ︷
88

Algorithmic Bioinformatics 21

Conceptual Problems with Local Alignment

Definition (Mosaic Effect)

In a long alignment with alternating regions of high/low/high similarity,
the whole alignment may receive a (slightly) higher score
than each of the shorter but well conserved regions individually.
The shorter more exact alignments would be more interesting biologically.

101

︷
︸︸

︷-99

100

100

Algorithmic Bioinformatics 22

Length Normalized Alignment

Possible solution?

Long alignments have an advantage over short ones;
they can accumulate higher score.

Attempt to define length-normalized score?

Careful: score(A)/|A| will favor length-1 alignments

More pragmatic solution

Use a regularization parameter L > 0 corresponding to a minimum length

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai).

Challenges: L needs to be known; DP algorithms don’t apply (lack of additivity).

Algorithmic Bioinformatics 23

Length Normalized Alignment

Possible solution?

Long alignments have an advantage over short ones;
they can accumulate higher score.

Attempt to define length-normalized score?

Careful: score(A)/|A| will favor length-1 alignments

More pragmatic solution

Use a regularization parameter L > 0 corresponding to a minimum length

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai).

Challenges: L needs to be known; DP algorithms don’t apply (lack of additivity).

Algorithmic Bioinformatics 23

Length Normalized Alignment

Possible solution?

Long alignments have an advantage over short ones;
they can accumulate higher score.

Attempt to define length-normalized score?

Careful: score(A)/|A| will favor length-1 alignments

More pragmatic solution

Use a regularization parameter L > 0 corresponding to a minimum length

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai).

Challenges: L needs to be known; DP algorithms don’t apply (lack of additivity).

Algorithmic Bioinformatics 23

Length Normalized Alignment

Possible solution?

Long alignments have an advantage over short ones;
they can accumulate higher score.

Attempt to define length-normalized score?

Careful: score(A)/|A| will favor length-1 alignments

More pragmatic solution

Use a regularization parameter L > 0 corresponding to a minimum length

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai).

Challenges: L needs to be known; DP algorithms don’t apply (lack of additivity).

Algorithmic Bioinformatics 23

Length Normalized Alignment

Idea

To maximize NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai) ,

use surrogate score function, for some fixed λ > 0:

DScoreλ,L(A) := Score(A)− λ(|A|+ L)

= −λL +

|A|∑
i=1

(Score(Ai)− λ)

allows to use known DP algorithm; all scores lowered by λ

offset −λL irrelevant

Algorithmic Bioinformatics 24

Length Normalized Alignment

Idea

To maximize NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai) ,

use surrogate score function, for some fixed λ > 0:

DScoreλ,L(A) := Score(A)− λ(|A|+ L)

= −λL +

|A|∑
i=1

(Score(Ai)− λ)

allows to use known DP algorithm; all scores lowered by λ

offset −λL irrelevant

Algorithmic Bioinformatics 24

Length Normalized Alignment

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai) (1)

DScoreλ,L(A) := Score(A)− λ(|A|+ L) (2)

Relation between the two scores

One can show that there exists λ∗ ≥ 0 such that the solutions coincide:

maxA DScoreλ∗,L(A)
maxA NormScoreL(A)

For given λ, we can efficiently solve (2) by DP, yielding alignment A(λ)

We can evaluate NormScore(A(λ)) and search for the correct λ∗.

In practice, binary search with 3–5 iteration suffices.

⇒ NormScoreL can be efficiently optimized (but rarely used in practice).

Algorithmic Bioinformatics 25

Length Normalized Alignment

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai) (1)

DScoreλ,L(A) := Score(A)− λ(|A|+ L) (2)

Relation between the two scores

One can show that there exists λ∗ ≥ 0 such that the solutions coincide:

maxA DScoreλ∗,L(A)
maxA NormScoreL(A)

For given λ, we can efficiently solve (2) by DP, yielding alignment A(λ)

We can evaluate NormScore(A(λ)) and search for the correct λ∗.

In practice, binary search with 3–5 iteration suffices.

⇒ NormScoreL can be efficiently optimized (but rarely used in practice).

Algorithmic Bioinformatics 25

Length Normalized Alignment

NormScoreL(A) :=
1

|A|+ L
·
∑

0≤i<|A|

Score(Ai) (1)

DScoreλ,L(A) := Score(A)− λ(|A|+ L) (2)

Relation between the two scores

One can show that there exists λ∗ ≥ 0 such that the solutions coincide:

maxA DScoreλ∗,L(A)
maxA NormScoreL(A)

For given λ, we can efficiently solve (2) by DP, yielding alignment A(λ)

We can evaluate NormScore(A(λ)) and search for the correct λ∗.

In practice, binary search with 3–5 iteration suffices.

⇒ NormScoreL can be efficiently optimized (but rarely used in practice).

Algorithmic Bioinformatics 25

Summary

Extensions and Improvements

Generalizing gap cost functions (especially affine gap costs)

Alignments with affine gap costs in O(mn) time

Alignments with anchor points

Linear-space alignment (with traceback): Hirschberg’s technique

Conceptual problems with local alignment

Alternative: Length-normalized alignment

Algorithmic Bioinformatics 26

Possible Exam Questions

What are linear vs. affine gap costs?

Explain how to implement alignment with general gap costs (time?)

Explain how to implement alignment with affine gap costs (time?)

How can alignments (tracebacks) be obtained in O(m + n) space instead of
O(mn) space? Illustrate why this is crucial in practice.

How is the running time affected by linear-space traceback?

Illustrate two conceptual problems with local alignment.

Explain the idea of length-normalized local alignment.

What is the role of the parameter L > 0?

Why can’t we use the standard DP algorithms for length-normalized alignment?

How can we efficiently find the optimal length-normalized alignment?

Algorithmic Bioinformatics 27

