
Text Compression
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Properties of the BWT

bwt sorted suffixes

d ie BWT lässt sich ohne
d ie Indizes der sortierten
d ie LMS-Substrings bilden
d ie hinterste freie Stelle
d ie selbe Anordnung
d ie selbe Länge
d ie sortierte Reihenfolge der
d iese ursprüngliche Definition
d ieser Ansatz hat eine

In natural language texts, certain
combinations of letters appear frequently,
e.g. ’die’, ’sch’, ’tz’, or ’ie’ (in German).

Then the BWT contains long runs of the
same character, such as
. . . ddddddddddd. . . , as shown.

Informally, repeats in the original text
become runs in the BWT.

Compression techniques have an
“easier job” on the BWT.

Example: run length encoding

Algorithmic Bioinformatics 2

Run Length Encoding

bwt = AAAAAAACCCCGGGGGGAAATT

Run length encoding (RLE)
replaces runs of the same character c with a pair (count, c).

Example:
Run length encoded bwt: 7A4C6G3A2T

Variations of RLE exist that avoid wasting space for short runs.

Algorithmic Bioinformatics 3

Run Length Encoding

bwt = AAAAAAACCCCGGGGGGAAATT

Run length encoding (RLE)
replaces runs of the same character c with a pair (count, c).

Example:
Run length encoded bwt: 7A4C6G3A2T

Variations of RLE exist that avoid wasting space for short runs.

Algorithmic Bioinformatics 3

bzip2

The tool bzip2 by Julian Seward is based on the BWT.
The input is a file (sequence of bytes) and a block size.
It processes each block separately, i.e., repeats across blocks are not exploited.

Processing (simplified, abbreviated)

For each block separately:

1 Compute the BWT.

2 Apply move-to-front (MTF) transformation.
The resulting sequence has many zeros and small values.

3 Apply a variant of run length encoding (RLE)

4 Apply Huffman coding:
Represent frequent symbols by short bit sequences, rare symbols by longer ones.

All steps are invertible.

Algorithmic Bioinformatics 4

bzip2

The tool bzip2 by Julian Seward is based on the BWT.
The input is a file (sequence of bytes) and a block size.
It processes each block separately, i.e., repeats across blocks are not exploited.

Processing (simplified, abbreviated)

For each block separately:

1 Compute the BWT.

2 Apply move-to-front (MTF) transformation.
The resulting sequence has many zeros and small values.

3 Apply a variant of run length encoding (RLE)

4 Apply Huffman coding:
Represent frequent symbols by short bit sequences, rare symbols by longer ones.

All steps are invertible.

Algorithmic Bioinformatics 4

Move-to-Front Encoding (Example tttt$aaac)

i	
 list	
 S	
 [i]	
 R	
 [i]	

0	
 $act	
 t	
 3	

1	
 t$ac	
 t	
 0	

2	
 t$ac	
 t	
 0	

3	
 t$ac	
 t	
 0	

4	
 t$ac	
 $	
 1	

5	
 $tac	
 a	
 2	

6	
 a$tc	
 a	
 0	

7	
 a$tc	
 a	
 0	

8	
 a$tc	
 c	
 3	

Current character a is encoded by its index
current alphabet list.

Then a is moved to the front of the list.

Runs of different characters
become runs of zeros.

Small (local) character set in BWT:
small numbers

Encoded sequence has high frequency
of small numbers like 0, 1,2, . . .

Algorithmic Bioinformatics 5

Move-to-Front Decoding

Decode (3,0,0,0,1,2,0,0,3) for Σ = {$, a, c, t}

Algorithmic Bioinformatics 6

Huffman Coding

MTF encoding works best together with frequency-based compression,
like Huffman Coding (Huffman trees), which produce optimal prefix-free codes:
Represent frequent symbols by short bit sequences, rare symbols by longer sequences.

Prefix-free?

No code word is a prefix of another code word.
This is essential for correct and easy decoding.

Optimality

Let T be an input string. Let fc be the relative frequency of character c in T .
Let ec be the chosen bit vector coding for c .
Then the average bit length per character is L(e) :=

∑
c fc · |ec |.

Among all prefix-free codes e : Σ→ {0, 1}+, find one with minimal L(e).

Algorithmic Bioinformatics 7

Huffman Coding

MTF encoding works best together with frequency-based compression,
like Huffman Coding (Huffman trees), which produce optimal prefix-free codes:
Represent frequent symbols by short bit sequences, rare symbols by longer sequences.

Prefix-free?

No code word is a prefix of another code word.
This is essential for correct and easy decoding.

Optimality

Let T be an input string. Let fc be the relative frequency of character c in T .
Let ec be the chosen bit vector coding for c .
Then the average bit length per character is L(e) :=

∑
c fc · |ec |.

Among all prefix-free codes e : Σ→ {0, 1}+, find one with minimal L(e).

Algorithmic Bioinformatics 7

Huffman Coding: Algorithm

Initially each leaf denotes a character c in Σ and has weight fc .

Repeat until a single node (with weight 1.0) remains:

Pick the two nodes with smallest weights.
Connect them by a new node, their common parent,
whose weight is the sum of the children’s weights.
The edge to the left child is labeled 0, the edge to the right child 1.
Remove the children from the nodes under consideration.

The code word (bit sequence) for c is spelled
by the labels on the path from the root to c .

Algorithmic Bioinformatics 8

Example: Huffman Coding

Huffman tree for string T = 300012003

Algorithmic Bioinformatics 9

Example: Huffman Coding

T = 300012003
code = 011110000011101 (15 bits instead of 18 for fixed-length code)

‘1‘

1/9 1/9
2/9

5/9

9/9

4/9

2/9

‘2‘
‘3‘

‘0‘

0

0

0 1
1

1

character	
 ‘0‘	
 ‘1‘	
 ‘2‘	
 ‘3‘	

frequency	
 5/9	
 1/9	
 1/9	
 2/9	

Huffman	
 Code	
 1	
 000	
 001	
 01	

fixed-­‐length	
 code	
 00	
 01	
 10	
 11	

Algorithmic Bioinformatics 10

Lempel-Ziv Factorizations

Algorithmic Bioinformatics 11

LZ77

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

The number of factors (substrings) is typically called z .

Lempel-Ziv 77

The LZ77 factorization is defined as follows: Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

(The possible “overlap” of fi with itself is desired!)

Representation

An LZ77 factor fi is written (`i , pi) with length `i and starting position pi .
In the single character case `i = 0, and pi is the (ASCII) character code.

Algorithmic Bioinformatics 12

LZ77

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

The number of factors (substrings) is typically called z .

Lempel-Ziv 77

The LZ77 factorization is defined as follows: Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

(The possible “overlap” of fi with itself is desired!)

Representation

An LZ77 factor fi is written (`i , pi) with length `i and starting position pi .
In the single character case `i = 0, and pi is the (ASCII) character code.

Algorithmic Bioinformatics 12

LZ77

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

The number of factors (substrings) is typically called z .

Lempel-Ziv 77

The LZ77 factorization is defined as follows: Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

(The possible “overlap” of fi with itself is desired!)

Representation

An LZ77 factor fi is written (`i , pi) with length `i and starting position pi .
In the single character case `i = 0, and pi is the (ASCII) character code.

Algorithmic Bioinformatics 12

LZ77 Example

Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

0 1

p: 012345678901234

s: aacaacabcabaaac

a|a|c|aaca|b|cab|aa|ac

(0,a)(1,0)(0,c)(4,0)(0,b)(3,5)(2,0)(2,1)

Algorithmic Bioinformatics 13

LZ77 Example

Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

0 1

p: 012345678901234

s: aacaacabcabaaac

a|a|c|aaca|b|cab|aa|ac

(0,a)(1,0)(0,c)(4,0)(0,b)(3,5)(2,0)(2,1)

Algorithmic Bioinformatics 13

LZ77 Example

Each factor fi is either

1 a single character that has not appeared in f1 . . . fi−1, or

2 the longest substring occurring at least twice in f1 . . . fi .

0 1

p: 012345678901234

s: aacaacabcabaaac

a|a|c|aaca|b|cab|aa|ac

(0,a)(1,0)(0,c)(4,0)(0,b)(3,5)(2,0)(2,1)

Algorithmic Bioinformatics 13

Computation of the LZ77 Factorization

Using a Suffix Tree of T , assuming constant alphabet size!

Preparation

Annotate each internal node with the smallest leaf number (position) below it.
Time: O(n), bottom-up

Factorization

When starting a new factor at position p, follow a path from the root spelling
T [p . . .], as long as leaves with numbers < p are present below.

When you are still in the root, insert single character T [p]

When you are in an inner node, insert (d , s), where d is the current string depth,
and s is the smallest leaf number below you.

Time: O(n), one step down per character (for constant alphabet)

Algorithmic Bioinformatics 14

Example: aacaacabcabaaac$

i0_0

15

$

i1_1

a

i8_1

b

i9_1

c

i2_2

a

i5_2

b

i6_2

c

11

ac$

i3_3

c

12

$

i4_4

a

0

acabcabaaac$

3

bcabaaac$

9

aaac$

6

cabaaac$

13

$

i7_3

a

1

acabcabaaac$

4

bcabaaac$

10

aaac$

7

cabaaac$

14

$

i10_2

a

2

acabcabaaac$

i11_3

b

8

aaac$

5

cabaaac$

LZ78

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

Lempel-Ziv 78 Factorization

Let f0 := ε (empty string). For i ≥ 1, if f1 . . . fi−1 = T [0 . . . (j − 1)],
let fi be the longest prefix of T [j . . .] such that fi = fka for some k < i and a ∈ Σ.

Representation

An LZ78 factor fi is written (ki , ai) with index 0 ≤ ki < i and character ai ∈ Σ.
A single character b is thus written (0, b).

Algorithmic Bioinformatics 16

LZ78

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

Lempel-Ziv 78 Factorization

Let f0 := ε (empty string). For i ≥ 1, if f1 . . . fi−1 = T [0 . . . (j − 1)],
let fi be the longest prefix of T [j . . .] such that fi = fka for some k < i and a ∈ Σ.

Representation

An LZ78 factor fi is written (ki , ai) with index 0 ≤ ki < i and character ai ∈ Σ.
A single character b is thus written (0, b).

Algorithmic Bioinformatics 16

LZ78

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:
T = f1f2 . . . fz

Lempel-Ziv 78 Factorization

Let f0 := ε (empty string). For i ≥ 1, if f1 . . . fi−1 = T [0 . . . (j − 1)],
let fi be the longest prefix of T [j . . .] such that fi = fka for some k < i and a ∈ Σ.

Representation

An LZ78 factor fi is written (ki , ai) with index 0 ≤ ki < i and character ai ∈ Σ.
A single character b is thus written (0, b).

Algorithmic Bioinformatics 16

LZ78 Example

Let f0 := ε (empty string). For i ≥ 1, if f1 . . . fi−1 = T [1 . . . (j − 1)],
let fi be the longest prefix of T [j . . .] such that fi = fka for some k < i and a ∈ Σ.

0 1

p: 012345678901234

s: aacaacabcabaaac

|a|ac|aa|c|ab|ca|b|aaa|c

i: 0 1 2 3 4 5 6 7 8

ka: 0a1c 1a 0c1b 4a 0b3a 4.

Algorithmic Bioinformatics 17

LZ78 Example

Let f0 := ε (empty string). For i ≥ 1, if f1 . . . fi−1 = T [1 . . . (j − 1)],
let fi be the longest prefix of T [j . . .] such that fi = fka for some k < i and a ∈ Σ.

0 1

p: 012345678901234

s: aacaacabcabaaac

|a|ac|aa|c|ab|ca|b|aaa|c

i: 0 1 2 3 4 5 6 7 8

ka: 0a1c 1a 0c1b 4a 0b3a 4.

Algorithmic Bioinformatics 17

Computation of the LZ78 Factorization

Using a trie of existing factors, assuming constant alphabet size!

Preparation

Initialize a trie consisting only of the root; mark the root as factor i = 0 (empty string).

Factorization

When starting a new factor fi at text position p,
follow a path from the root spelling T [p . . .] as far as possible.

Attach a new leaf (marked i) to the current node (marked with some k < i),
with an edge labeled a := T [p + d] where d is the current string depth in the trie.

Output (k, a)

Time: O(n), one step down per character (for constant alphabet)

Algorithmic Bioinformatics 18

Example

0 1

p: 012345678901234

s: aacaacabcabaaac

|a|ac|aa|c|ab|ca|b|aaa|c

i: 0 1 2 3 4 5 6 7 8

ka: 0a1c 1a 0c1b 4a 0b3a 4.

Algorithmic Bioinformatics 19

Remarks on LZ factorizations

LZ77 and LZ78 invented by Lempel and Ziv in 1977 and 1978 (also LZ1, LZ2)

Simplified and streamlined description given here!

Many variations exist:
In fact, LZ77 uses a sliding window and forgets text to the far left

We assume constant alphabet (finding correct outgoing edge in O(1) time);
more complex algorithms needed for poly(n) alphabet.

Still, LZ factorizations are the foundation for many compression methods:
ZIP, GIF, PNG, . . .

Patent issues (till 2004) with LZ78, but LZ77 was always patent-free

Algorithmic Bioinformatics 20

Summary

Compression

Why the BWT is useful for compression

Run Length Encoding

Move-to-Front encoding

Huffman coding

LZ77 factorization and computation via suffix tree

LZ78 factorization and computation via simple trie

Note

Finding good application-specific compression algorithms is valuable:
https://www.illumina.com/company/news-center/feature-articles/

illumina-acquires-enancio-s-compression-software.html

Algorithmic Bioinformatics 21

https://www.illumina.com/company/news-center/feature-articles/illumina-acquires-enancio-s-compression-software.html
https://www.illumina.com/company/news-center/feature-articles/illumina-acquires-enancio-s-compression-software.html

Exam Questions

Why can the BWT be easier to compress than the input string?

What is run length encoding?

Explain Move-to-Front encoding. Apply it to an example.

Explain Huffman coding.

Define the LZ77 factorization.

How do you efficiently compute the LZ77 factorization?

Define the LZ78 factorization.

How do you efficiently compute the LZ78 factorization?

What if the alphabet is not of constant size, but grows as e.g.,
√
n :

How does the time of the LZ77 and LZ78 factorization algorithms change?

Algorithmic Bioinformatics 22

