
Suffix Trees
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Motivation

What have we learned so far

Algorithms for O(n + m) pattern search,
for a pattern P of length m and text T of length n

Observation: m� n in many applications

mapping millions of sequenced DNA fragments
to the human genome (n > 3 · 109 bp)

full text search on websites, forums, etc.

finding motifs in a large set of sequences

Idea

Build an index over the text first to allow very fast searches in O(m) time
Today: Suffix tries and trees

Algorithmic Bioinformatics 2

Motivation: Runtimes

online search index-based search
Preprocessing O(m) O(n)

Search one pattern O(n) O(m)

Preprocess
and search k patterns O

(
k(m + n)

)
O
(
n + km

)

Algorithmic Bioinformatics 3

Trees

A rooted tree is a connected acyclic graph with a special node r , the root node,
such that all edges point away from the root.

The depth depth(v) of a node v is its distance from the root; i.e. the number of
edges on the unique path from the root to v . In particular, depth(r) = 0.

Algorithmic Bioinformatics 4

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.
tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.
tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.
tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.

tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.
tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Edge-labeled Trees

Σ-tree or trie: rooted tree whose edges are each annotated with one single letter
from Σ, such that no node has two outgoing edges labeled with the same letter.

Σ+-tree: rooted tree whose edges are each annotated with a non-empty string
from Σ, such that no node has two outgoing edges starting with the same
character.

string(v): concatenation of the edge labels on the path from the root to v .

string depth of a node v : stringdepth(v) := |string(v)|.
tree is compact if no node (other than possibly root r) has exactly one child.

node with no outgoing edges is called leaf.

Algorithmic Bioinformatics 5

Black board: Edge-labeled Trees

Suffix Trees

A Σ-tree or Σ+-tree T spells x ∈ Σ∗ if x can be read along a path starting from
root.

words(T): set of strings spelled by T .

Suffix Tree

The suffix tree of s ∈ Σ∗ is a compact Σ+-tree with
words(T) =

{
s ′
∣∣s ′ is a substring of s

}
.

Sentinel Character

Special sentinel character $ not part of Σ

Consider the suffix tree of s$ (instead of s)

Implies bijection between suffixes and leaves

Algorithmic Bioinformatics 7

Suffix Trees

A Σ-tree or Σ+-tree T spells x ∈ Σ∗ if x can be read along a path starting from
root.

words(T): set of strings spelled by T .

Suffix Tree

The suffix tree of s ∈ Σ∗ is a compact Σ+-tree with
words(T) =

{
s ′
∣∣s ′ is a substring of s

}
.

Sentinel Character

Special sentinel character $ not part of Σ

Consider the suffix tree of s$ (instead of s)

Implies bijection between suffixes and leaves

Algorithmic Bioinformatics 7

Suffix Trees

A Σ-tree or Σ+-tree T spells x ∈ Σ∗ if x can be read along a path starting from
root.

words(T): set of strings spelled by T .

Suffix Tree

The suffix tree of s ∈ Σ∗ is a compact Σ+-tree with
words(T) =

{
s ′
∣∣s ′ is a substring of s

}
.

Sentinel Character

Special sentinel character $ not part of Σ

Consider the suffix tree of s$ (instead of s)

Implies bijection between suffixes and leaves

Algorithmic Bioinformatics 7

Example: Constructing a Suffix Tree

cabca$

Suffix Trie vs. Suffix Tree

Suffix Trie Suffix Tree

Algorithmic Bioinformatics 9

Implicit vs. Explicit Suffix Tree

T=cabca T$=cabca$
suffixes of T$:
0 cabca$
1 abca$
2 bca$
3 ca$
4 a$
5 $

implicit suffix tree
Algorithmic Bioinformatics 10

Using Suffix Trees for Pattern Matching

Flavors of pattern searching

1 Decision: Is P a substring of s?

2 Counting: How often does P occur in s?

3 Enumeration: At what positions does P occur in s?

Algorithmic Bioinformatics 11

Black board: Suffix Trees for Pattern Matching

Runtimes: Using Suffix Trees for Pattern Matching

Flavors of pattern searching

1 Decision: Is P a substring of s?
→ O(m)

2 Counting: How often does P occur in s?
→ O(m + k)

3 Enumeration: At what positions does P occur in s?
→ O(m + k)

Note: m = |P| and k is the number of occurrences.

Algorithmic Bioinformatics 13

Applications: Longest repeated substring

Given s ∈ Σ∗. The suffix tree of s$ spells all substrings of s$.

Question: how do you find the longest repeated
substring?

Answer: A substring t of s occurs more than once
if after reading t from the root you end in an inner
node or on an edge above an inner node. So the
longest repeated substring can be found as the
inner node with the longest path label (largest
string depth) in a tree traversal.

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Suffix tree for s = cabca$

Algorithmic Bioinformatics 14

Applications: Longest repeated substring

Given s ∈ Σ∗. The suffix tree of s$ spells all substrings of s$.

Question: how do you find the longest repeated
substring?

Answer: A substring t of s occurs more than once
if after reading t from the root you end in an inner
node or on an edge above an inner node. So the
longest repeated substring can be found as the
inner node with the longest path label (largest
string depth) in a tree traversal.

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Suffix tree for s = cabca$

Algorithmic Bioinformatics 14

Applications: Shortest unique substring

Question: how do you find the shortest unique
substring (without the sentinel)?

Answer: Unique substrings end in a leaf edge in
the tree. We look for the inner node v (including
the root node) with the shortest path label that
does contain a leaf edge that is not simply the $
character. Path label v plus the first letter on the
leaf edge denotes the shortest unique substring.

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Suffix tree for s = cabca$

Algorithmic Bioinformatics 15

Applications: Shortest unique substring

Question: how do you find the shortest unique
substring (without the sentinel)?

Answer: Unique substrings end in a leaf edge in
the tree. We look for the inner node v (including
the root node) with the shortest path label that
does contain a leaf edge that is not simply the $
character. Path label v plus the first letter on the
leaf edge denotes the shortest unique substring.

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Suffix tree for s = cabca$

Algorithmic Bioinformatics 15

Linear Time Suffix Tree Construction

Algorithmic Bioinformatics 16

Issues to be solved

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Naive implementation

Space consumpution?

O(n2)

Construction time?

O(n2)

Goals

Linear space: O(n)

Linear time: O(n)

Algorithmic Bioinformatics 17

Issues to be solved

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Naive implementation

Space consumpution?
O(n2)

Construction time?

O(n2)

Goals

Linear space: O(n)

Linear time: O(n)

Algorithmic Bioinformatics 17

Issues to be solved

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Naive implementation

Space consumpution?
O(n2)

Construction time?
O(n2)

Goals

Linear space: O(n)

Linear time: O(n)

Algorithmic Bioinformatics 17

Issues to be solved

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Naive implementation

Space consumpution?
O(n2)

Construction time?
O(n2)

Goals

Linear space: O(n)

Linear time: O(n)

Algorithmic Bioinformatics 17

History of linear time suffix tree algorithms

Peter Weiner introduced suffix trees in 1973
(named bi-tree at the time, algorithm of the year)

Edward McCreight 1976 (starting from longest suffixes)

Esko Ukkonen introduced an on-line algorithm in 1992,
later known as Ukkonen’s algorithm (we will do this one)

Algorithmic Bioinformatics 18

Number of Nodes and Edges

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Lemma

A suffix tree of string T$ with |T$| = n has
exactly n leaves. There exist at most n − 1
inner nodes and at most 2(n − 1) edges.

Proof

Try at home...

Algorithmic Bioinformatics 19

Space Consumption

 012345
T$=cabca$

Space

Edge labels take O(n2) space

Indices into T take O(1) per edge,
and O(n) in total

Algorithmic Bioinformatics 20

Space Consumption

 012345
T$=cabca$

[5
:6
]

[5
:6
]

[5
:6
]

[2
:6
]

[2
:6
]

[1
:2
]

[0:2]
[2
:6
]

Space

Edge labels take O(n2) space

Indices into T take O(1) per edge,
and O(n) in total

Algorithmic Bioinformatics 20

Idea: Online Construction (babacacb$)
 Empty tree

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

"ba"

b
a

a

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

"ba"

b
a

a

"bab"

ba

a
b

b

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

"ba"

b
a

a

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

"ba"

b
a

a

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

"babac"

c

b

a

b

c

a

c

b

a

c

a

c

Algorithmic Bioinformatics 21

Idea: Online Construction (babacacb$)
 Empty tree "b"

b

"ba"

b
a

a

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

"babac"

c

b

a

b

c

a

c

b

a

c

a

c

"babaca"

c
b

a

b

c

a

c

b

a

c

a

c

a

a

a
a

a

Algorithmic Bioinformatics 21

Online Construction

Key Question

How can we achieve linear time when we extend O(n) different suffixes in each step?
Example:

Suffix tree of bab contains suffixes bab, ab, b.

Suffix tree of baba contains suffixes baba, aba, ba, a.

Ukkonen’s algorithm

Rule I: implicit leaf extension

Rule II: new leaf creation

Rule III: already represented

Algorithmic Bioinformatics 22

Rule I: Implicit Leaf Extension

Scenario

Suffix ends in a leaf.

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

Approach

Special end marker “E”: substring up to the end of the current text

Algorithmic Bioinformatics 23

Rule I: Implicit Leaf Extension

Scenario

Suffix ends in a leaf.

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

(1
:E
) (0

:E
)

(1
:E
) (0
:E
)

Approach

Special end marker “E”: substring up to the end of the current text

Algorithmic Bioinformatics 23

Rule II: New Leaf Creation

Scenario

Suffix ends inside tree (edge label or at inner node),
new character not yet present below this position in the tree

suffix bab

a

b

a

"babac"

b

a

b

c a

c
suffix bac

"baba"

Approach

Insert leaf. Create inner node if suffix ends inside edge label.

Algorithmic Bioinformatics 24

Rule III: Already Represented

Scenario

Suffix ends inside tree (edge label or at inner node),
new character is present below this position in the tree.

"bab"

ba

a
b

b

"baba"

ba

a
b

b

a
a

suffix b

suffix ba

Approach

No need to do anything.

Algorithmic Bioinformatics 25

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1

1 2

Phase 2

1 1 3

Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

T

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1

1 2

Phase 2

1 1 3

Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

T

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2

1 1 3

Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

T

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2

1 1 3

Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A

T

A

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A

T

A

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3

1 1 2 3

Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A
T

T

T

A

A

T

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3 1 1 2 3
Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A
T

T

T

A

A

T

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3 1 1 2 3
Phase 4

1 1 1 3 3

Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A
T

A

T

A

T

A

A

T

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3 1 1 2 3
Phase 4 1 1 1 3 3
Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

A
T

A

T

A

T

A

A

T

A

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3 1 1 2 3
Phase 4 1 1 1 3 3
Phase 5

1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

$

$

A
T
A

$

T

A

$

T
A

A
T
A

$

$

TAATA$
012356

Algorithmic Bioinformatics 26

Rule Example

suffix starting at
0 1 2 3 4 5

Phase 0 2
Phase 1 1 2
Phase 2 1 1 3
Phase 3 1 1 2 3
Phase 4 1 1 1 3 3
Phase 5 1 1 1 2 2 2

Rule 1: implicit leaf extension

Rule 2: new leaf creation

Rule 3: already represented

A

$

$

A
T
A

$

T

A

$

T
A

A
T
A

$

$

TAATA$
012356

Algorithmic Bioinformatics 26

Ukkonen’s Algorithm: Open Questions

Situation

We need to apply Rule 2 exactly n times:
Rule 2 for the suffix starting at i is used in one phase ≥ i .

Rule 1 does not entail any work to be done (zero time!)

Rule 3 only moves the active position down by one character (O(1) time)

Missing ingredients

How do we know when to apply which rule?

How do we locate positions in the tree that require work?

How do we implement Rule II to run in constant time?

Algorithmic Bioinformatics 27

Suffix links

Suffix tree for T = cabca$:

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
 a

a

For an internal node v with path label cα, c ∈ Σ, α ∈ Σ∗,
there is another node v ′, with path label α (why?).
An edge v → v ′ (string cα→ α) is a suffix link (“cut off the first character”).

Algorithmic Bioinformatics 28

Ukkonen Example (babacacb$)
"ba" empty tree "b"

b

(0
:E

)

b
a

(1
:E

) (0:E)

a

"bab"

ba

(1
:E

) (0
:E

)

a
b

b

"baba"

ba

(1
:E

) (0
:E

)

a
b

b

a
a

"babac"

c(4:E)

b

a
(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c

(4
:E

)

b

(2
:E

)

a

c

a

c

"babaca"

c

(4:E)

b

a

(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c(4
:E

)

b

(2
:E

)a

c

a

c

a

a

a
a

a

"babacac"

c

(4
:E

)

b

a

(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c

(4
:E

)

b

(2
:E

)

a

c

a

c

a

a

a

a

a

c c
c c

c

Ukkonen Example (babacacb$)

"babacacb"

"babac"

c(4:E)

b

a
(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c

(4
:E

)

b

(2
:E

)

a

c

a

c

"babaca"

c

(4:E)

b

a

(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c(4
:E

)

b

(2
:E

)a

c

a

c

a

a

a
a

a

"babacac"

c

(4
:E

)

b

a

(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c

(4
:E

)

b

(2
:E

)

a

c

a

c

a

a

a

a

a

c c
c c

c

c

(7
:E

)

b

a(0:2)

b

(2
:E

)

c

(4
:E

)

a

(1
:2

)

c

(5
:E

)

b

(2
:E

)

(4
:5

)

b

(7
:E

)

a

c

b

(4:5)

b

(5
:E

)

a

c

b

a

c

b

a

c

a

c

b

a

c

a

c

b

"babacacb$"

c

(7
:E

)

b

a

(0:1)

b

(2
:E

)

c

(4
:E

)

a
(1:2)

c

(5
:E

)

b

(2
:E

)

(4
:5

)
b

(7
:E

)
a

c

b

(4:5)

b

(5
:E

)

a

c

b

a

c

b

a

c

a

c

b

a

c

a

c

b

$

$ $
$

$

$ $ $

$

(8
:E

)

(8
:E

)

(1:2)

Suffix Links: Skip & Count
Skip & Count Trick

1 From active position (node axy), jump up
to parent node ax , count |y | in O(1) time.

2 Use suffix link to x in O(1) time

3 Walk down along y , hop from node to node,
skipping & counting characters in O(hi) time,
with hi : number of hops for phase i .

Amortized Analysis

hi = O(n) for each phase i ⇒ O(n2) total.

Need to show in fact
∑n−1

i=0 hi = O(n):

Node depth cannot increase arbitrarily: ≤ n.

Each leaf insertion decreases depth by ≤ 1.

Algorithmic Bioinformatics 30

Suffix Links: Skip & Count
Skip & Count Trick

1 From active position (node axy), jump up
to parent node ax , count |y | in O(1) time.

2 Use suffix link to x in O(1) time

3 Walk down along y , hop from node to node,
skipping & counting characters in O(hi) time,
with hi : number of hops for phase i .

Amortized Analysis

hi = O(n) for each phase i ⇒ O(n2) total.

Need to show in fact
∑n−1

i=0 hi = O(n):

Node depth cannot increase arbitrarily: ≤ n.

Each leaf insertion decreases depth by ≤ 1.

Algorithmic Bioinformatics 30

Suffix Links: Skip & Count
Skip & Count Trick

1 From active position (node axy), jump up
to parent node ax , count |y | in O(1) time.

2 Use suffix link to x in O(1) time

3 Walk down along y , hop from node to node,
skipping & counting characters in O(hi) time,
with hi : number of hops for phase i .

Amortized Analysis

hi = O(n) for each phase i ⇒ O(n2) total.

Need to show in fact
∑n−1

i=0 hi = O(n):

Node depth cannot increase arbitrarily: ≤ n.

Each leaf insertion decreases depth by ≤ 1.

Algorithmic Bioinformatics 30

Ukkonen’s Suffix Tree Construction
Text T$ with n = |T$|: Construction uses n phases i = 0, . . . , n − 1.

Initialization

Start with a root-only tree. The active position is the root.

Phase i with j ≤ i leaves already inserted

1 Apply Rule 1 for each existing leaf (implicit leaf extension); no time

2 Check whether T [i] already exists from the active position:
If yes, apply Rule 3, move active position down, done.

3 If not, start inserting leaves j , j + 1, . . . up to i or until Rule 3 applies.
To move from j to j + 1, use existing suffix links and insert new suffix links.

Termination

T [n − 1] = $ is unique. All missing leaves are automatically created.

Finally, replace end marker E by n − 1 on each edge.

Algorithmic Bioinformatics 31

Ukkonen’s Suffix Tree Construction
Text T$ with n = |T$|: Construction uses n phases i = 0, . . . , n − 1.

Initialization

Start with a root-only tree. The active position is the root.

Phase i with j ≤ i leaves already inserted

1 Apply Rule 1 for each existing leaf (implicit leaf extension); no time

2 Check whether T [i] already exists from the active position:
If yes, apply Rule 3, move active position down, done.

3 If not, start inserting leaves j , j + 1, . . . up to i or until Rule 3 applies.
To move from j to j + 1, use existing suffix links and insert new suffix links.

Termination

T [n − 1] = $ is unique. All missing leaves are automatically created.

Finally, replace end marker E by n − 1 on each edge.

Algorithmic Bioinformatics 31

Ukkonen’s Suffix Tree Construction
Text T$ with n = |T$|: Construction uses n phases i = 0, . . . , n − 1.

Initialization

Start with a root-only tree. The active position is the root.

Phase i with j ≤ i leaves already inserted

1 Apply Rule 1 for each existing leaf (implicit leaf extension); no time

2 Check whether T [i] already exists from the active position:
If yes, apply Rule 3, move active position down, done.

3 If not, start inserting leaves j , j + 1, . . . up to i or until Rule 3 applies.
To move from j to j + 1, use existing suffix links and insert new suffix links.

Termination

T [n − 1] = $ is unique. All missing leaves are automatically created.

Finally, replace end marker E by n − 1 on each edge.
Algorithmic Bioinformatics 31

Implementation Notes

Active position

The active position can be represented as a triple (v , c , `),
with a node v , character c of an outgoing edge,
and number of characters ` ≥ 0 along that edge.

Data structures for children of a node

Consider a node with c children, c ≤ |Σ|:

space/node access time total space used for

linked list O(c) O(c) O(n) large alphabets
array O(|Σ|) O(1) O(n|Σ|) small alphabets
balanced tree O(c) O(log c) O(n) large alphabets
hash table O(c) O(1) O(n) very large alphabets

Algorithmic Bioinformatics 32

Summary

Today

Suffix trees

Applications
Pattern matching
Longest repeated substring
Shortest unique substring

Ukkonen’s algorithm: linear time suffix tree construction

substring representation on edges by indices
implicit zero-time edge extension by end marker E
suffix links
skip & count trick: amortized analysis

Suffix links: useful also in other contexts

Algorithmic Bioinformatics 33

Exam Questions

Define a suffix tree. What is a suffix trie?

Construct the suffix tree with suffix links of an example string.

What is the running time of pattern search with a suffix tree?

How can the longest repeated substring problem and the shortest unique substring
problem be solved in optimal time with suffix trees?

Explain Ukkonen’s algorithm.

What is the important trick to achieve linear space consumption in Ukkonen’s algorithm?

What is a suffix link? What are suffix links used for in Ukkonen’s algorithm?

Apply Ukkonnen’s algorithm to an example string.

Why does Ukkonen’s algorithm run in O(n) time?

Explain the skip & count trick.

Explain how one could implement the elements of a suffix tree.
What are alternative ways of storing the children of a suffix tree node?

Algorithmic Bioinformatics 34

