
Exact Pattern Matching with Bit-Parallel Algorithms
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021



Overview

Previous Lecture

Exact Pattern Matching (for single patterns without index)

Reminder: NFAs and DFAs

DFA-based Knuth-Morris-Pratt algorithm (lps table)

Bit-parallel simulation of NFA: Shift-And algorithm

Today’s Lecture

More on bit-parallel algorithms:

How to get longer shifts than Horspool’s algorithm?
→ BNDM algorithm (backward non-deterministic DAWG matching)

Bit-parallel algorithms for more general patterns
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A Substring-based Algorithm: BNDM
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Reminder: Horspool Algorithm

Horspool shift function

?????A?????

 BAAAAB

?????B?????

     BAAAAB

?????C??????

      BAAAAB

Text:

Pattern:

Approach

Compare characters from right to left in current window

Shift window based on last character

Problem

Small alphabet (most likely) leads to short shifts (especially bad for long patterns).
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Substring-based Shift Function

Ideas

Read from right to left (like Horspool)

Read on after mismatch to achieve longer shifts

When substring of window is not substring of pattern, window can be shifted
beyond that substring.

Keeping track of suffixes of window that are prefixes of pattern can further
increase shifts
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Sought: Data Structure

Requirements / supported queries

Add characters from right to left

Is part read so far a substring of the pattern?

Is part read so far a prefix of the pattern?
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Solution

Non-deterministic suffix automaton

B B A C A A C A A A C

Is substring?

Is prefix?

Pattern
BBACAACAAAC

Text window
BBACAACBBAC
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Non-Deterministic Suffix Automaton

Construction

Construct pattern matching NFA of reverse pattern

All states are start states

Usage

Use Shift-And approach to maintain set of active states

Any state active ⇔ substring occurs in pattern

Accept state active ⇔ found prefix
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BNDM Algorithm

BNDM Algorithm Outline

For each window:

1 Initialize suffix automaton (all states active)

2 Read window from right to left until no states active or full window read.

3 Keep track of longest window suffix that is pattern prefix

4 Shift window to align this suffix with pattern prefix
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BNDM Algorithm: Code
1 def BNDM(P, T):

2 masks , accept_state = compute_masks(P[:: -1])

3 n, m, pos = len(T), len(P), len(P)

4 while pos <= n:

5 A = (1 << m) - 1 # initialize: all bits on

6 j, lastsuffix = 1, 0

7 while A != 0:

8 A &= masks[T[pos -j]] # update (AND)

9 if A & accept_state != 0: # accept state?

10 if j == m: # full pattern found?

11 yield (pos - m, pos)

12 break

13 else: # found proper prefix

14 lastsuffix = j # store suffix

15 j += 1

16 A = A << 1 # update (shift)

17 pos += m - lastsuffix # shift window
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Deterministic Counterpart: BDM

BDM Algorithm

As before, we could turn NFA into DFA
→ deterministic suffix automaton (=DAWG)

Either use subset construction (can be inefficient) or use complicated techniques
(or keep using BNDM)

Names

BDM = Backward deterministic DAWG Matching,

BNDM = Backward Non-deterministic DAWG Matching,

DAWG = Directed Acyclic Word Graph.
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Bit-Parallel Algorithms for Extended Patterns
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Overview

So far, patterns were simple strings, P ∈ Σ∗.

For several applications (e.g., transcription factor binding sites on DNA),
it is necessary to consider patterns that allow

different characters (some subset of Σ) at some positions,

variable-length runs of arbitrary characters,

optional characters at some positions.

All of these patterns are subsets of regular expressions,
which are recognized by DFAs.

However, specialized bit-parallel implementations for each pattern class are more
efficient.
All of the above patterns can be recognized by variations of the Shift-And algorithm.
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Generalized Strings

A generalized string over Σ is a string over 2Σ \ { ∅ },
i.e., a string whose characters are non-empty subsets of Σ.

Example: Consider the set {Maier, Meier, Meier, Meyer }.
It can be written as a single generalized string: {M } { a,e } { i,y } { e } { r }.
Shorthand: M[ae][iy]er

Notation: Singleton sets are represented by their unique element.
Larger sets are represented by square brackets: [ae] for { a,e }.
We write # for Σ ∈ 2Σ (“any charachter”).

In DNA sequences, the IUPAC code specifies a one-letter code for each subset:
size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

Algorithmic Bioinformatics 14



Generalized Strings

A generalized string over Σ is a string over 2Σ \ { ∅ },
i.e., a string whose characters are non-empty subsets of Σ.

Example: Consider the set {Maier, Meier, Meier, Meyer }.
It can be written as a single generalized string: {M } { a,e } { i,y } { e } { r }.
Shorthand: M[ae][iy]er

Notation: Singleton sets are represented by their unique element.
Larger sets are represented by square brackets: [ae] for { a,e }.
We write # for Σ ∈ 2Σ (“any charachter”).

In DNA sequences, the IUPAC code specifies a one-letter code for each subset:
size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

Algorithmic Bioinformatics 14



Generalized Strings

A generalized string over Σ is a string over 2Σ \ { ∅ },
i.e., a string whose characters are non-empty subsets of Σ.

Example: Consider the set {Maier, Meier, Meier, Meyer }.
It can be written as a single generalized string: {M } { a,e } { i,y } { e } { r }.
Shorthand: M[ae][iy]er

Notation: Singleton sets are represented by their unique element.
Larger sets are represented by square brackets: [ae] for { a,e }.
We write # for Σ ∈ 2Σ (“any charachter”).

In DNA sequences, the IUPAC code specifies a one-letter code for each subset:
size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

Algorithmic Bioinformatics 14



Generalized Strings

A generalized string over Σ is a string over 2Σ \ { ∅ },
i.e., a string whose characters are non-empty subsets of Σ.

Example: Consider the set {Maier, Meier, Meier, Meyer }.
It can be written as a single generalized string: {M } { a,e } { i,y } { e } { r }.
Shorthand: M[ae][iy]er

Notation: Singleton sets are represented by their unique element.
Larger sets are represented by square brackets: [ae] for { a,e }.
We write # for Σ ∈ 2Σ (“any charachter”).

In DNA sequences, the IUPAC code specifies a one-letter code for each subset:
size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

Algorithmic Bioinformatics 14



The Shift-And Algorithm for Generalized Strings

Recall the Shift-And algorithm with active state bits D:
D ←

(
(D � 1) | 1

)
& mask(c)

The Shift-And algorithm can process generalized strings without modifications.

The bit masks simply tell which characters are allowed at which position.
It is no problem that more than one bit is set at some positions.

Example: P = abba#b over Σ = {a, b}.
b#abba (reversed because of bit numbers)

mask[a] 011001

mask[b] 110110

(That was too easy, so let’s try more complex patterns...)
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Bounded-length Runs of Arbitrary Characters

A run of arbitrary characters is a sequence of Σs (written as #s)
in a generalized string.
We allow variable run lengths, but with fixed lower and upper bounds.

Notation: #(L,U) with lower bound L and upper bound U

Example: P = bba#(1,3)a:
After bba, we have one to three arbitrary characters, followed by a.

Three restrictions:

1 An element #(L,U) does not appear first or last in the pattern.
(We could remove them without substantially changing the pattern.)

2 No two such elements appear next to each other.
(No problem, just add them: #(L,U)#(L′,U ′) =̂ #(L + L′,U + U ′).)

3 We require 1 ≤ L ≤ U.
(Allowing L = 0 is technically more challenging!)
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An NFA for Bounded-length Runs of Arbitrary Characters

Before considering a bit-parallel implementation, we design an NFA.

We need ε-transitions, an extension of the standard NFA definition:
ε-transitions happen instantaneously, without consuming a character.

The ε-transitions allow us to skip the optional characters.
For technical reasons, they exit the initial state of the run;
the first #s in each run are optional.
(One could do it differently, but that would be harder to implement!)

Example: P = bba#(1,3)a:

Σ

b b a

ε

ε

Σ Σ Σ a
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Bit-parallel Implementation

Σ

b b a

ε

ε

Σ Σ Σ a

We use the Shift-And algorithm on the maximal-length pattern as a basis.
Then we additionally need to implement the ε-transitions.

Masks are constructed as before (for #: 1-bits for each character).

Example: P = bba#(1,3)a with Σ = {a, b, c}:

a###abb

mask[a] 1111100

mask[b] 0111011

mask[c] 0111000
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Implementation of ε-Transitions

Σ

b b a

ε

ε

Σ Σ Σ a

ε-transitions are instantaneous:
Whenever a state with outgoing ε-transitions becomes active (1-bit),
this is immediately propagated to the targets of the outgoing ε-edges;
these are by construction adjacent to the source state.

The actual propagation of 1-bits will be achieved by subtraction (next slide).

We use two additional bit masks:

Bit mask I marks states with outgoing ε-transitions.
Bit mask F marks the state after the target of the last ε-transition of each run.

a###abb

F 0100000

I 0000100
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Propagation of Ones

Let A be the bit mask of active states. Then A & I selects active I -states.

Subtraction F − (A & I ) propagates 1-bits, zeroes F -bit

F 0100000

A & I 0000100

− 0011100

Problem: Inactive I -states keep corresponding F -bit set:

F 010000100000

A & I 000000000100

− 010000011100
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Propagation of Ones (Continued)

Solution: Zero out F -bits by a bitwise and with the negation of F :

F 010000100000

A & I 000000000100

F − (A & I ) 010000011100

∼F 101111011111

(F − (A & I )) & ∼F 000000011100

The resulting modified Shift-And algorithm is thus:

1 Apply standard Shift-And update:
A = ((A << 1) | 1) & mask[c]

2 Propagate active I -states along ε-transitions:

A = A | ((F - (A & I)) & ∼F)
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Patterns with Optional Characters

Another modification of the Shift-And algorithm allows optional characters.

Notation: Write ? after the optional character.

Example: The set {color, colour} becomes P = colou?r.

Consecutive ε-transitions (“blocks”) are allowed.

Larger example: P = ban?a?na?s and T = banabanns

Σ

b a

ε

n

ε

a n a

ε

s
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Bit-Parallel Implementation of Optional Characters

Three bit masks:
I : block start; O: tagets of ε-transitions; F : block end

I :

F :

O :

0

0

0

1

0

0

0

0

1

0

1

1

1

0

0

0

1

1

0

0

0

Σ

b a

ε

n

ε

a n a

ε

s

Note: actual bit patterns are reversed (bit numbering vs. state numbering)!

Activity of any state within a block must be propagated to the block’s end.
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Bit-Parallel Implementation of Optional Characters (Continued)

Activity of any state within a block must be propagated to the block’s end:
Propagate the lowest active bit within a block up to the F -bit.

Consider how 1-bit propagation via subtraction works:
1101010000 1101011000

- 1 - 100

1101001111 1101010100

Bits to the left (green) and to the right (black) are unchanged;
only bits between the rightmost ones in the current block change (red).
We develop the machinery by example:

A .0010100. A .0010100.

I .0000001. A|F .1010100.

O .1111110. (A|F)-I .1010011.

F .1000000. ((A|F)-I)=(A|F) .1111000.

O&((A|F)-I)=(A|F) .1111000.

>> .1111100. A|(O&((A|F)-I)=(A|F)) .1111100.
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Bit-Parallel Implementation of Optional Characters (Conclusion)

Note: Bitwise equality X = Y can be implemented as ∼(X ⊕ Y ).

Full implementation:

1 Create masks for all characters;
treat optional characters as regular characters.

2 Standard Shift-And update of active states A:
A = ((A << 1) | 1) & mask[c]

3 Propagate active states over optional characters:

A_f = A | F

A = A | (O & (∼(A_f - I) ^ A_f))

(Here ^ denotes the xor-operation.)

Algorithmic Bioinformatics 25



Summary I

Topic

Bit-parallel methods for exact pattern matching of single patterns without text indexing

Properties of bit-parallel algorithms

Typically only applicable if an “almost linear” NFA recognizes the pattern,
and if this NFA has at most 64 (register width) states

Shift-And approach is simple and very flexible, extends to general patterns;
running time is always O(n) for constant |P| < 64.

BNDM approach is also simple and flexible;
may pathologically use O(mn) time even for constant m = |P| < 64,
but has best-case running time of O(m + n/m).
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Summary II

Topic

Exact pattern matching of single patterns without text indexing

Strengths of different algorithms

Shift-And: simple, applicable if |P| < 64

B(N)DM: for |P| < 64; best case of O(m + n/m);
long shifts even for small alphabet + long pattern

Horspool: best case of O(m + n/m) for large alphabet + long pattern

Knuth-Morris-Pratt: best asymptotic time of O(m + n)

Automata theory was actually very useful

Next topic: index structures (i.e. preprocessing the text)
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Exam Questions

Explain the idea of bit-parallel simulation of NFAs.

Explain the suffix automaton and the BNDM algorithm.

What are the advantages of BNDM over Horspool’s algorithm?

What are the advantages of BNDM over the Shift-And algorithm?

What is a generalized string?

How does the Shift-And algorithm change when you allow generalized strings?

Why would you want to use the Shift-And algorithm for runs with bounded length,
when the algorithms for optional characters is more general (#(3, 5) = #?#?###)?

How do you implement bit-parallel propagation of an active state?
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