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Pattern Matching Problem

-Wasbeginningt ogetverytiredofsittingbyhersisteron
thebankandofhavingnothingtodoonceortwiceshehadpeepedi
ntothebookhersisterwasreadingbutithadnopicturesorconv
ersationsinitandwhatistheuseof abookthought-withou
tpicturesorconversation

Task

Find all occurrences of a given string in another (longer) string.

Goals
m As fast as possible (running time)

m As easily as possible (algorithm /implementation)
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Relevance and Applications of String Matching

General Applications
m Web search
m Full-text searches in scientific articles

m Edit-replace in source code ...

Applications in Computational Biology
m Searching for sequence features like binding sites
m Searching sequence data bases (“blasting”)
m Building overlap graphs for de novo assembly
m Mapping next-generation sequencing reads to reference genome
[

. Mmany many more
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Notation

¥ alphabet = finite set of characters (letters)
w e Xk string (word, k-gram, k-mer, text) of length k
we X =i, Y% word of arbitrary finite length
wi] character at index i in word w
wli...Jj] substring from i to j (inclusively)
Example
Y = {A,B,C} w[l] =B
w=ABCCBAAB w[5] = A
Indices: 01234567 w[l...4] = BCCB

Note: Indexing starts at zero (0) !
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Pattern Matching Problem

Given

Finite alphabet ¥, text T € X", pattern P € ¥.; usually m < n.

(The pattern is a simple string for now.)

Sought (three variants)

@l Decision: Is P a substring of T7
~> Is there an i € N such that P=T[i...i+ m—1] 7

21 Counting: How often does P occur in T7?

~ Let M := {iE}N’P: Tli...i+m—1]}. Report |M|.
3l Enumeration: At what positions does P occur in T7?

~> Report the full set M of match positions.

Algorithmic Bioinformatics 1 E



Problem Variants |

Exact Pattern Matching (what we do next)

Given a pattern P € ™ and atext T € ¥,
find indices i such that P = T[i...i+ m—1].

I3 ZBI i ion
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Problem Variants |

Exact Pattern Matching (what we do next)

Given a pattern P € ™ and atext T € ¥,
find indices i such that P = T[i...i+ m—1].

Approximative Pattern Matching (later in this course)

Find all approximate occurrences of P in T, i.e. for a distance measure d,
find indices i,/ such that d(P, T[i...j]) < k.

Example: Hamming distance

Hamming distance: number of different positions (for strings of the same length)
P = ABCDE, T = XXXABDDEYYY
diP,T[3...7) =1
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Problem Variants Il

Pattern P € ™ and text T € "

Searching without index (what we do next)
m Preprocess pattern in O(m)
m Search text for pattern in O(n)
= Search for k different patterns in the same text: O(k(m+ n)) or O(km + n)

Searching with index (what we do after that)
m Preprocess text and build index data structure in O(n)
m Search for pattern using index in O(m)
m Search for k different patterns in the same text: O(n+ km)

m Index structures are useful for many tasks beyond searching
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows
m Compare pattern P with window (i.e. substring) of text T

m Slide window across text from left to right

Example

Text: AACBACCABBABCA. ..

Pattern: BACCAB™— Window
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows
m Compare pattern P with window (i.e. substring) of text T

m Slide window across text from left to right

Example

Text: AACBACCABBABCA. ..

Pattern: BACCAB
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows
m Compare pattern P with window (i.e. substring) of text T

m Slide window across text from left to right

Example

Text: AACBACCABBABCA. ..

Pattern: BACCAB
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows
m Compare pattern P with window (i.e. substring) of text T

m Slide window across text from left to right

Example

Text:  AACBEGGNBBABCA. ..

Pattern: BACCAB

vvvvvvvvvvv
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows
m Compare pattern P with window (i.e. substring) of text T

m Slide window across text from left to right

Example

Text:  AACBEGGNBBABCA. ..

Pattern: BACCAB

Naive Algorithm
m Shift window by one position in each iteration

m Compare pattern to window content from left to right
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Code: The (few) things you need to know about Python

Pseudocode vs. Python
m (Good) Python code is as readable as pseudo code, even if you don't know Python

= Allows you (and us) to try/test algorithms immediately
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Code: The (few) things you need to know about Python

Pseudocode vs. Python

(Good) Python code is as readable as pseudo code, even if you don't know Python

= Allows you (and us) to try/test algorithms immediately
“for i in range(5,n):": iterate over j € {5,...,n— 1}
“for i in range(n):": iterate over i € {0,...,n— 1}

“len(x)": length/size of x, when x is string, list, set, etc. (any container)
“T[i:j]": substring T[i...j — 1], also applies to lists

“def foo(x,y)": define a function named foo

“yield x": like return, but execution is continued later during iteration

“dict ()": dictionary (hash table) storing key-value pairs

“//": integer division
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Naive Pattern Matching Algorithm

def naive_pattern_matching(P, T):
m = len(P)
n len(T)
for i in range(n - m + 1):
if T[i:i+m] ==
yield i

(VR N i

55 o

i=0 Pattern P
i=1 Comparisons: —»
i=2 lllllll

Running time: 7
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Naive Pattern Matching Algorithm

m = len(P)
n len(T)
for i in range(n - m + 1):
if Tli:i+m] ==
yield 1

def naive_pattern_matching(P, T):

Pattern P
Comparisons: —»

Running time: O(mn) worst case. O(E, - n) on average, but what is E,?
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What can we do better?

Algorithmic Bioinformatics
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What can we do better?

Pattern P
Comparisons: —s

|deas
I Perhaps O(mn) is pessimistic, and O(E,, - n) has a small constant E, 7

2l We “touch” the same characters in T multiple times.
Can we “reuse” information from preceeding comparisons?
— Automata-based algorithms (next lecture)

Bl Can we shift window by more than one character?
— Horspool algorithm (and others; next topic)

728 ZBL AN 11
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Average-Case Analysis of the Naive Algorithm

Theorem (Expected Running Time)

Let ¥ be an alphabet with |X| > 2.

Randomly (i.i.d.) choose a pattern of length m and a text of length n over ¥.
Then the worst-case running time of the naive algorithnm is O(mn),
but the expected running time is O(En, - n) = O(n) with a small constant E,, < 2.
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Average-Case Analysis of the Naive Algorithm

Theorem (Expected Running Time)

Let ¥ be an alphabet with |X| > 2.

Randomly (i.i.d.) choose a pattern of length m and a text of length n over ¥.
Then the worst-case running time of the naive algorithnm is O(mn),

but the expected running time is O(En, - n) = O(n) with a small constant E,, < 2.

We compute E,,: The probability p that two random characters agree is

_ =1

p = = .
DEER N

(If different characters a have different probabilities p, each, the expression for p is
more complicated, but the rest of the proof remains unchanged.)
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Average-Case Analysis of the Naive Algorithm (Continued)

m The probability that all m pattern characters match with the text window is p™.
This needs m comparisons (and results in a match, but this is irrelevant).
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Average-Case Analysis of the Naive Algorithm (Continued)

m The probability that all m pattern characters match with the text window is p™.
This needs m comparisons (and results in a match, but this is irrelevant).

m The probability to first fail at the j-th comparison j =1,...,m, is p/~1 (1 — p).
This needs j comparisons of course (and results in a mismatch).
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Average-Case Analysis of the Naive Algorithm (Continued)

m The probability that all m pattern characters match with the text window is p™.
This needs m comparisons (and results in a match, but this is irrelevant).

m The probability to first fail at the j-th comparison j =1,...,m, is p/~1 (1 — p).
This needs j comparisons of course (and results in a mismatch).

m Therefore, we can compute E,, as the weighted average

Em:=mp™+> jp ™ (1-p)
j=1
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Average-Case Analysis of the Naive Algorithm (Continued)

m The probability that all m pattern characters match with the text window is p™.

This needs m comparisons (and results in a match, but this is irrelevant).
m The probability to first fail at the j-th comparison j =1,...,m, is p/~1(1
This needs j comparisons of course (and results in a mismatch).
m Therefore, we can compute E,, as the weighted average

Em:=mp™+> jp ™ (1-p)
=1

m For any m, the value of E,, is bounded by E, := limpy_ 00 Em:

Em<Ex=(1-p ijf !
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Average-Case Analysis of the Naive Algorithm (Continued)

m The probability that all m pattern characters match with the text window is p™.

This needs m comparisons (and results in a match, but this is irrelevant).
m The probability to first fail at the j-th comparison j =1,...,m, is p/~1(1
This needs j comparisons of course (and results in a mismatch).
m Therefore, we can compute E,, as the weighted average

Em:=mp™+> jp ™ (1-p)
=1

m For any m, the value of E,, is bounded by E, := limpy_ 00 Em:

Em<Ex=(1-p ijf !

m It remains to evaluate the series E, (by first-year maths).
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Average-Case Analysis of the Naive Algorithm (Continued)
m So far: For any alphabet ¥ and any m > 1, we have

Em<Ex = (1-p)> jpP ™t =00-p)> jr.
=0

j=1

m You can use a computer algebra system to evaluate this, or...
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Average-Case Analysis of the Naive Algorithm (Continued)
m So far: For any alphabet ¥ and any m > 1, we have

Em<Ex = (1-p)> jpP ™t =00-p)> jr.
=0

j=1

m You can use a computer algebra system to evaluate this, or...

m Consider E5c = E(p) as a function of p (recall p=1/|X| < 1 for |¥| > 2).

m The term j p/~ 1 is the derivative of p/.
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Average-Case Analysis of the Naive Algorithm (Continued)
m So far: For any alphabet ¥ and any m > 1, we have

Em<Ex = (1-p)> jpP ™t =00-p)> jr.
=0

j=1

m You can use a computer algebra system to evaluate this, or...

m Consider E5c = E(p) as a function of p (recall p=1/|X| < 1 for |¥| > 2).

m The term j p/~ 1 is the derivative of p/.
= Because ) 72, p/ =1/(1 — p) (geometric series), we have

= .. d 1 1
pjzi - )
;J dpl—p (1-p)?

vvvvvvvvvvv
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Average-Case Analysis of the Naive Algorithm (Conclusion)

m In summary, for all m > 1 and all ¥ > 2,

1 % <2.

Em < Exo = =
n < T VR

m For |X| — oo we have E, N\ 1.

m The expected running time on i.i.d. random texts is thus O(n - Ep,) = O(n)
with a small constant E,,, < 2.

Algorithmic Bioinformatics s 7B .
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Motivation: Horspool Algorithm

Question
When and how can the window be shifted by more than one position?

|deas
m Compare pattern right-to-left to text window.

m Characters not occurring in pattern — large shift

(Extreme) Example

AAAAABAAAAAAAAAAAAAAAAAAAAA
BBBB

vvvvvvvvvvv

Algorithmic Bioinformatics @] Hieumoss

17



Motivation: Horspool Algorithm

Question
When and how can the window be shifted by more than one position?

|deas
m Compare pattern right-to-left to text window.

m Characters not occurring in pattern — large shift

(Extreme) Example

AAAAABAAAAAMAAAAAAAAAAAAAAA
BBBB
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Motivation: Horspool Algorithm

Question
When and how can the window be shifted by more than one position?

|deas
m Compare pattern right-to-left to text window.

m Characters not occurring in pattern — large shift

(Extreme) Example

AAAAA.AAAAA.AAAAII;'AAAAAAAAA
BBBB
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Motivation: Horspool Algorithm

Question
When and how can the window be shifted by more than one position?

|deas
m Compare pattern right-to-left to text window.

m Characters not occurring in pattern — large shift

(Extreme) Example

AAAAA.AAAAA.AAAAA.AAAA%AAA
BBBB
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Motivation: Horspool Algorithm

Question
When and how can the window be shifted by more than one position?

|deas
m Compare pattern right-to-left to text window.

m Characters not occurring in pattern — large shift

(Extreme) Example

AAAAA.AAAAA.AAAAA.AAAA%AAA
BBBB

Best case time: O(n/m)
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Horspool Algorithm

Approach
m Window-based pattern matching algorithm

m Shift determined by last character in window

P = BAAAAB and ¥ = {A,B,C}

Question: How far can we shift the window without missing pattern occurrences?

Text: PPPPUNC?P?? Yaldlalald - Talalalals Yalalalald  lalalalalald

Algorithmic Bioinformatics Hﬁ] Sinocs S ZBUE
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Horspool Algorithm

Approach
m Window-based pattern matching algorithm

m Shift determined by last character in window

P = BAAAAB and ¥ = {A,B,C}

Question: How far can we shift the window without missing pattern occurrences?

Text: Vet [aeldlale (e - falelaed Vel [ dads
Pattern: BAAABB BAAAAB BAAAAB

Algorithmic Bioinformatics Hﬁﬂ Sinocs 2 ZBU 18
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Horspool Algorithm (formal) |

p = BAAAAB und ¥ = {A,B,C}
Text: 27727 7@?7777 272777877777
el

....................

Pattern: BAAABB BAAAAB

Yalalalald - Talaldlalals

.....

......

BAAAAB

def horspool_preprocessing(sigma, P):
shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]l] = len(P) - i - 1
return shifts

Algorithmic Bioinformatics @] Hieumoss
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Horspool Algorithm (formal) I

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i -
return shifts

N~ o g B W N B

def horspool_preprocessing(sigma, P):
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Horspool Algorithm (formal) I

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i -
return shifts

N~ o g B W N B

def horspool_preprocessing(sigma, P):

shifts:
A B C
6 6 6
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N~ o g B W N B

Horspool Algorithm (formal) I

def horspool_preprocessing(sigma, P):

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i - 1
return shifts

shifts: i=0 pP=BAAAAB
A B C
6 5 6

Algorithmic Bioinformatics @] Hieumoss
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Horspool Algorithm (formal) I

def horspool_preprocessing(sigma, P):

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i - 1
return shifts

shifts: i=1 p= BEAAAB
A B C
4 5 6
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Horspool Algorithm (formal) I

def horspool_preprocessing(sigma, P):

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i - 1
return shifts

shifts: i=2 p= BABAAB
A B C
3 5 6
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Horspool Algorithm (formal) I

def horspool_preprocessing(sigma, P):

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i - 1
return shifts

shifts: i=3 p= BAABAB
A B C
2 5 6
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Horspool Algorithm (formal) I

def horspool_preprocessing(sigma, P):

shifts = dict ()
for ¢ in sigma:
shifts[c] = len(P)
for i in range(len(P)-1):
shifts[P[i]] = len(P) - i - 1
return shifts

shifts: i=4 p = BAAABB
A B C
1 5 6
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):
shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i
i += shifts[T[i]]

Algorithmic Bioinformatics ﬂ@] Hieumoss
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):

shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i

i += shifts[T[i]]

Text: ABBCABBABAABBAAAABAABCAC. . .
BAAAAB

Algorithmic Bioinformatics ﬂ@] Hieumoss
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):

shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i

i += shifts[T[i]]

Text: ABBCACBABAABBAAAABAABCAC. . .
BAAAAB
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):

shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i

i += shifts[T[i]]

Text: ABBCACBABAABBAAABBAABCAC. . .
BAAAAB
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):

shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i

i += shifts[T[i]]

Text:  ABBCACBABAABBENEEBAABCAC. . .
BAAAAB
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Horspool-Algorithmus (formal) 111

def horspool_matching(sigma, P, T):

shifts = horspool_preprocessing(sigma, P)
i = len(P) -1
while i < len(T):
if T[i-len(P)+1:i+1] == P:
yield i

i += shifts[T[i]]

Text:  ABBCACBABAABBENEEBAABCAC. . .
BAAAAB

Property of the Horspool Algorithm
m Fast for large alphabets and long patterns
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Summary

m Today's topic: Exact Pattern Matching (for single patterns without index)
m Naive algorithm and analysis

m Idea to improve on naive algorithm:
Shift window by more than one character
— Horspool algorithm
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Possible exam questions

State the pattern matching problem and known variants of it.

What is the worst-case and average-case running time of the naive algorithm?
The naive algorithm is fast on average; why bother with more complex algorithms?
Explain Horspool's algorithm.

Construct the Horspool shift table for a short pattern.

For which pattern properties is Horspool's algorithm fast or slow?

How may Horspool's algorithm be modified to be fast
on long patterns with small alphabet?
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