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Pattern Matching Problem

alicewasbeginningtogetverytiredofsittingbyhersisteron

thebankandofhavingnothingtodoonceortwiceshehadpeepedi

ntothebookhersisterwasreadingbutithadnopicturesorconv

ersationsinitandwhatistheuseofabookthoughtalicewithou

tpicturesorconversation

Task

Find all occurrences of a given string in another (longer) string.

Goals

As fast as possible (running time)

As easily as possible (algorithm/implementation)
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Relevance and Applications of String Matching

General Applications

Web search

Full-text searches in scientific articles

Edit-replace in source code ...

Applications in Computational Biology

Searching for sequence features like binding sites

Searching sequence data bases (“blasting”)

Building overlap graphs for de novo assembly

Mapping next-generation sequencing reads to reference genome

... many many more
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Notation

Σ alphabet = finite set of characters (letters)
w ∈ Σk string (word, k-gram, k-mer, text) of length k
w ∈ Σ∗ =

⋃∞
k=0 Σk word of arbitrary finite length

w [i ] character at index i in word w
w [i . . . j ] substring from i to j (inclusively)

Example

Σ = {A, B, C} w [1] = B

w = A B C C B A A B w [5] = A

Indices: 0 1 2 3 4 5 6 7 w [1 . . . 4] = BCCB

Note: Indexing starts at zero (0) !
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Pattern Matching Problem

Given

Finite alphabet Σ, text T ∈ Σn, pattern P ∈ Σm; usually m� n.
(The pattern is a simple string for now.)

Sought (three variants)

1 Decision: Is P a substring of T?
 Is there an i ∈ N such that P = T [i . . . i + m − 1] ?

2 Counting: How often does P occur in T?
 Let M :=

{
i ∈ N

∣∣P = T [i . . . i + m − 1]
}

. Report |M|.
3 Enumeration: At what positions does P occur in T?
 Report the full set M of match positions.
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Problem Variants I

Exact Pattern Matching (what we do next)

Given a pattern P ∈ Σm and a text T ∈ Σn,
find indices i such that P = T [i . . . i + m − 1].

Approximative Pattern Matching (later in this course)

Find all approximate occurrences of P in T , i.e. for a distance measure d ,
find indices i , j such that d(P,T [i . . . j ]) ≤ k .

Example: Hamming distance

Hamming distance: number of different positions (for strings of the same length)
P = ABCDE, T = XXXABDDEYYY

d(P,T [3 . . . 7]) = 1
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Problem Variants II

Pattern P ∈ Σm and text T ∈ Σn

Searching without index (what we do next)

Preprocess pattern in O(m)

Search text for pattern in O(n)

Search for k different patterns in the same text: O
(
k(m + n)

)
or O(km + n)

Searching with index (what we do after that)

Preprocess text and build index data structure in O(n)

Search for pattern using index in O(m)

Search for k different patterns in the same text: O(n + km)

Index structures are useful for many tasks beyond searching
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows

Compare pattern P with window (i.e. substring) of text T

Slide window across text from left to right

Example

AACBACCABBABCA...Text:
BACCABPattern: Window

Naive Algorithm

Shift window by one position in each iteration

Compare pattern to window content from left to right
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Exact Pattern Matching using Sliding Windows

Approach: sliding windows

Compare pattern P with window (i.e. substring) of text T

Slide window across text from left to right

Example

AACBACCABBABCA...Text:
BACCABPattern:

Naive Algorithm
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Compare pattern to window content from left to right
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Code: The (few) things you need to know about Python

Pseudocode vs. Python

(Good) Python code is as readable as pseudo code, even if you don’t know Python

Allows you (and us) to try/test algorithms immediately

“for i in range(5,n):”: iterate over i ∈ {5, . . . , n − 1}
“for i in range(n):”: iterate over i ∈ {0, . . . , n − 1}
“len(x)”: length/size of x, when x is string, list, set, etc. (any container)

“T[i:j]”: substring T [i . . . j − 1], also applies to lists

“def foo(x,y)”: def ine a function named foo

“yield x”: like return, but execution is continued later during iteration

“dict()”: dictionary (hash table) storing key-value pairs

“//”: integer division
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Naive Pattern Matching Algorithm

1 def naive_pattern_matching(P, T):

2 m = len(P)

3 n = len(T)

4 for i in range(n - m + 1):

5 if T[i:i+m] == P:

6 yield i

i=0

...

i=1
i=2 ...

Pattern P
Text T

0 1 n-1... ...

Comparisons:

Running time: ?
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Naive Pattern Matching Algorithm

1 def naive_pattern_matching(P, T):

2 m = len(P)

3 n = len(T)

4 for i in range(n - m + 1):

5 if T[i:i+m] == P:

6 yield i

i=0

...

i=1
i=2 ...

Pattern P
Text T

0 1 n-1... ...

Comparisons:

Running time: O(mn) worst case. O(Em · n) on average, but what is Em?
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What can we do better?

i=0

...

i=1
i=2 ...

Pattern P
Text T

0 1 n-1... ...

Comparisons:

Ideas

1 Perhaps O(mn) is pessimistic, and O(Em · n) has a small constant Em ?

2 We “touch” the same characters in T multiple times.
Can we “reuse” information from preceeding comparisons?
→ Automata-based algorithms (next lecture)

3 Can we shift window by more than one character?
→ Horspool algorithm (and others; next topic)
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Average-Case Analysis of the Näıve Algorithm

Theorem (Expected Running Time)

Let Σ be an alphabet with |Σ| ≥ 2.
Randomly (i.i.d.) choose a pattern of length m and a text of length n over Σ.
Then the worst-case running time of the näıve algorithnm is O(mn),
but the expected running time is O(Em · n) = O(n) with a small constant Em < 2.

We compute Em: The probability p that two random characters agree is

p :=
|Σ|
|Σ|2

=
1

|Σ|
.

(If different characters a have different probabilities pa each, the expression for p is
more complicated, but the rest of the proof remains unchanged.)
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Average-Case Analysis of the Näıve Algorithm (Continued)

The probability that all m pattern characters match with the text window is pm.
This needs m comparisons (and results in a match, but this is irrelevant).

The probability to first fail at the j-th comparison j = 1, . . . ,m, is pj−1 (1− p).
This needs j comparisons of course (and results in a mismatch).

Therefore, we can compute Em as the weighted average

Em := mpm +
m∑
j=1

j pj−1 (1− p)

For any m, the value of Em is bounded by E∞ := limm→∞ Em:

Em < E∞ = (1− p)
∞∑
j=1

j pj−1 .

It remains to evaluate the series E∞ (by first-year maths).
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Average-Case Analysis of the Näıve Algorithm (Continued)

So far: For any alphabet Σ and any m ≥ 1, we have

Em < E∞ = (1− p)
∞∑
j=1

j pj−1 = (1− p)
∞∑
j=0

j pj−1 .

You can use a computer algebra system to evaluate this, or...

Consider E∞ = E∞(p) as a function of p (recall p = 1/|Σ| < 1 for |Σ| ≥ 2).

The term j pj−1 is the derivative of pj .

Because
∑∞

j=0 pj = 1/(1− p) (geometric series), we have

∞∑
j=0

j pj =
d

dp

1

1− p
=

1

(1− p)2
,

E∞ =
1− p

(1− p)2
=

1

1− p
=

|Σ|
|Σ| − 1

≤ 2.
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So far: For any alphabet Σ and any m ≥ 1, we have

Em < E∞ = (1− p)
∞∑
j=1

j pj−1 = (1− p)
∞∑
j=0

j pj−1 .

You can use a computer algebra system to evaluate this, or...

Consider E∞ = E∞(p) as a function of p (recall p = 1/|Σ| < 1 for |Σ| ≥ 2).

The term j pj−1 is the derivative of pj .

Because
∑∞

j=0 pj = 1/(1− p) (geometric series), we have

∞∑
j=0

j pj =
d

dp

1

1− p
=

1

(1− p)2
,

E∞ =
1− p

(1− p)2
=

1

1− p
=

|Σ|
|Σ| − 1

≤ 2.

Algorithmic Bioinformatics 14



Average-Case Analysis of the Näıve Algorithm (Conclusion)

In summary, for all m ≥ 1 and all Σ ≥ 2,

Em < E∞ =
1

1− p
=

|Σ|
|Σ| − 1

≤ 2 .

For |Σ| → ∞ we have Em ↘ 1.

The expected running time on i.i.d. random texts is thus O(n · Em) = O(n)
with a small constant Em ≤ 2.
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Horspool Algorithm
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Motivation: Horspool Algorithm

Question

When and how can the window be shifted by more than one position?

Ideas

Compare pattern right-to-left to text window.

Characters not occurring in pattern → large shift

(Extreme) Example

AAAAAAAAAAAAAAAAAAAAAAAAAAA
BBBBBB

Best case time: O(n/m)
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Horspool Algorithm

Approach

Window-based pattern matching algorithm

Shift determined by last character in window

P = BAAAAB and Σ = {A, B, C}
Question: How far can we shift the window without missing pattern occurrences?

?????A????? ?????B????? ?????C??????Text:

Algorithmic Bioinformatics 18



Horspool Algorithm

Approach

Window-based pattern matching algorithm

Shift determined by last character in window

P = BAAAAB and Σ = {A, B, C}
Question: How far can we shift the window without missing pattern occurrences?

?????A?????

 BAAAAB

?????B?????

     BAAAAB

?????C??????

      BAAAAB

Text:

Pattern:
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Horspool Algorithm (formal) I

p = BAAAAB und Σ = {A, B, C}
?????A?????

 BAAAAB

?????B?????

     BAAAAB

?????C??????

      BAAAAB

Text:

Pattern:

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts
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Horspool Algorithm (formal) II

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts:

A B C

6 6 6
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Horspool Algorithm (formal) II

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts: i = 0

A B C

6 5 6

p = BAAAAB
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3 for c in sigma:

4 shifts[c] = len(P)
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6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts: i = 1

A B C

4 5 6

p = BAAAAB
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Horspool Algorithm (formal) II

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts: i = 2

A B C

3 5 6

p = BAAAAB
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Horspool Algorithm (formal) II

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts: i = 3

A B C

2 5 6

p = BAAAAB
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Horspool Algorithm (formal) II

1 def horspool_preprocessing(sigma , P):

2 shifts = dict()

3 for c in sigma:

4 shifts[c] = len(P)

5 for i in range(len(P)-1):

6 shifts[P[i]] = len(P) - i - 1

7 return shifts

shifts: i = 4

A B C

1 5 6

p = BAAAAB

Algorithmic Bioinformatics 20



Horspool-Algorithmus (formal) III

1 def horspool_matching(sigma , P, T):

2 shifts = horspool_preprocessing(sigma , P)

3 i = len(P) - 1

4 while i < len(T):

5 if T[i-len(P)+1:i+1] == P:

6 yield i

7 i += shifts[T[i]]

ABBCACBABAABBAAAABAABCAC...

BAAAAB

Text: shifts:

A B C
1 5 6

Property of the Horspool Algorithm

Fast for large alphabets and long patterns
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Summary

Today’s topic: Exact Pattern Matching (for single patterns without index)

Näıve algorithm and analysis

Idea to improve on naive algorithm:
Shift window by more than one character
→ Horspool algorithm

Algorithmic Bioinformatics 22



Possible exam questions

State the pattern matching problem and known variants of it.

What is the worst-case and average-case running time of the näıve algorithm?

The näıve algorithm is fast on average; why bother with more complex algorithms?

Explain Horspool’s algorithm.

Construct the Horspool shift table for a short pattern.

For which pattern properties is Horspool’s algorithm fast or slow?

How may Horspool’s algorithm be modified to be fast
on long patterns with small alphabet?
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