
Modern hashing
for alignment-free sequence analysis

Part 4:
Performance Engineering

Jens Zentgraf & Sven Rahmann
GCB 2021

Overview

Saving space

■ optimizing the bit-level layout of the hash table
■ compact encoding of hash choices and values
■ quotienting

Saving time

■ optimization of hash choices (store many keys at their first choice)
■ shortcuts for unsuccessful lookups
■ prefetching
■ parallelization

PhD / Postdoc position available

at the "Algorithmic Bioinformatics" group, Saarbrücken

■ algorithm engineering applied to bioinformatics:
e.g., tricks like presented here

■ novel methods for new problems
■ desired: algorithm & data structures skills
■ desired: programming experience, software development,

or: strong theoretical background
■ Application areas: pangenomics, cancer, metagenomics
■ full position (100%), also for PhD students, 3 years
■ Contact Sven (rahmann@cs.uni-saarland.de)

mailto:rahmann@cs.uni-saarland.de

Saving Space

Bit-level layout of a hash table bucket

Several options to store representation for each (key, value)

■ DNA k-mer key needs K=2k bits; value needs v bits
■ Assume K ≤ 64, v ≤ 64, cache line = 512 bits

■ [key1 (64) | value1 (64) | key2 (64) | value2 (64) | …]
(4 pairs will exactly fit in a cache line; may use padding otherwise)

■ [key1 (K) | value1 (v) | key2 (K) | value2 (v) | …]
(more pairs fit into a cache line, need bit operations to extract)

■ [key1 (K) | key2 (K) | … | aggregated-values (≤ bv)]
(saves space if number of possible values is not a power of 2;
for 5 values, b=3: 53=125 (7 bits) instead of 3 ceil(log2(5)) bits = 9 bits)

Saving Space with Quotienting: Example
Keys: canonical codes of 25-mers (50 bits)
Values: species (5 classes: 3 bits)

4.5 billion k-mers: reference genomes, alternative alleles, cDNA transcripts:
53 bits per entry, load 0.88: 33.88 GB for hash table 😩

Quotienting to the rescue:

■ Do not store full keys (k-mers), but only "quotients" (here 20 bits),
plus hash function choice (2 bits) plus values (3 bits) → 25 bits per entry:

15.98 GB for hash table 😃
(could be slightly reduced by higher load, value compression, etc.)

Quotienting: Details
Keys are encoded canonical k-mers (half of set [4k] := {0, .., 4k-1}).

Step 1: Bijective randomizing function [4k] ➝ [4k] with a odd

Step 2: Map to buckets (simply mod p: number of buckets). Define

 f(x) := ga,b(x) mod p and q(x) := ga,b(x) // p .
Then x can be uniquely reconstructed
from f(x) ("hash value, "bucket number") and q(x) ("fingerprint", "quotient").
Sufficient to store q(x) in bucket f(x) (and which hash function was chosen).

Bit-level layout with quotients and hash choices

■ [key1 (K) | value1 (v) | key2 (K) | value2 (v) | …]
⬇

■ [quotient1 (Q) | choice1(2) | value1 (v) | quotient2 (Q) | choice2 (2) | value2 (v) | …]
= [signature1 (Q+2) | value1 (v) | signature2 (Q+2) | value2 (v) | …]

Save more bits by sorting slots by choice, and only storing choice counts.
Can be combined with compact value storage:

■ [choices (≤ 2b) | quotient1 (Q) | quotient2 (Q) | … | values (≤ bv)]
(requires decoding of the "choices" integer into actual numbers)

To pad or not to pad?
Main decision: pad incomplete 512-bit cache lines or not?
No: some buckets may extend across two cache lines.

This and following illustrations by Uriel Elias Wiebelitz (TU Dortmund)

Cache line

Saving Time

Optimization of the hash function choices

■ Idea: Place many k-mers into the bucket of their first hash function.
■ Can be written as a minimum weighted bipartite matching problem:

4.5 billions of keys ↔ 100s of millions of buckets
 (3 buckets for each key; cost 1, 2, 3)

■ Solvable exactly within a few hours up to a few days of CPU time.
■ Can save up to 10 - 15% of running time in a real application (xengsort)

in comparison to hash tables created by "random walk".

Optimization of the hash function choices

Look-up costs (#cache misses)
for different hash table designs:

■ bucketed Cuckoo hashing;
■ different bucket sizes,
■ different load factors,
■ two insertion strategies.

Speeding up unsuccessful searches

■ Bad: unsuccessful key searches always incur h=3 cache misses.
■ … unless we learn from the first bucket that a search

on the second / third bucket will not be successful.
■ Idea: Reserve bits for each bucket to store information of the following type:

"there is at least one key that would be stored here with its 1st (2nd) choice,
but is stored at its 2nd (3rd) choice."

■ Different combinations or resolutions are possible: 3 bits / 2 bits / 1 bit.

■ Good speed-up for unsuccessful searches, little additional space cost.
■ Additional set-up time for computing all the bits after inserting all elements.
■ Insertions/deletions of keys invalidate the computed bits.

 Prefetching
■ Reading random access data rom RAM is slow (200 - 300 CPU cycles).
■ Idea: Reduce the waiting period for data stored somewhere in RAM.
■ Easy access patterns are prefetched by the hardware

■ Linear consecutive access in both directions ([reverse] streaming)
■ Regular jumps of fixed width

■ Complex patterns need manual prefetching (software prefetching)

Hardware prefetching

Hardware prefetching

Hardware prefetching

Hardware prefetching

Hardware prefetching

Hardware prefetching

Hardware prefetching

Cache friendliness

Cuckoo hashing:

■ Searching within a bucket is cache-efficient
■ Looking up a bucket is not, but limited to h=3 buckets.
■ Also, there is software prefetching !

Software prefetching

■ CPU instruction
■ Can be helpful if used at the right moments
■ Can slow down the program

■ One instruction more to handle by the CPU
■ Still needed data can be removed from the cache

Software prefetching in Cuckoo hash tables
Possible strategies

1. Never prefetch
2. Before examining a key's first bucket, prefetch the second bucket.

Before examining the second bucket, prefetch the third bucket.
3. Before examining a key's first bucket, prefetch all other buckets.
4. When examining n keys in a row, during processing key i,

prefetch the first bucket of key i+k, for some offset k.

Any of them may be fastest. Needs benchmarking.
Look-ahead (4.) complicates the implementation.
We first recommend comparing 1. with 2.

Parallelism

■ So far only serial algorithms, but modern hardware is multi-core
■ Also SIMD: single instruction multiple data

(e.g. compute hash functions on multiple k-mers in parallel)

■ Parallel lookup is easy:
■ only read access
■ data does not change

■ Parallel write is harder:
■ Ensure that the data is always consistent
■ Multiple threads write to the same memory location: Synchronisation needed
■ Perhaps avoid the possibility of conflicting writes ?

Access without synchronisation
■ Both threads check whether the hash

position is empty or not.
■ Both see that the location is empty.
■ Thread one stores key 1.
■ Thread 2 stores key 2

and overwrites key 1.
■ Key 1 is lost.

Access with synchronisation
■ Try to lock table slot
■ As soon as the lock is confirmed:

■ change value in slot
■ If slot is locked:

■ Wait until the lock can be obtained

Large memory overhead if explicit locks
are used for every single slot.

(Don't do this!)

Atomic compare-and-swap (CAS) instruction
■ Can be used to implement lock-free algorithms
■ Compare content of memory location with an expected value
■ If the content equals the expected value:

■ Store the new value
■ Return the old value

■ Otherwise do nothing.
■ One atomic CPU instruction, cannot be interrupted by another thread

■ Positions in a hash table are initialized with 0
■ Try to store a new key, expected old value is always 0
■ Only store the new key if the slot was empty
■ Otherwise find a new location.

Alternative: Partition hash table into sub-tables
■ one thread responsible for each sub-table
■ design hash functions to be consistent within a table

Producer-consumer model on partitioned table

Summary: Performance Engineering

Saving space

■ optimizing the bit-level layout of the hash table
■ quotienting
■ compact encoding of hash choices and values

Saving time

■ optimization of hash choices (store many keys at their first choice)
■ shortcuts for unsuccessful lookups
■ prefetching
■ parallelization

