= -
©® UNIVERSITAT
“"Uuuuw DES
ST SAARLANDES

Modern hashing
for alignment-free sequence analysis

Part 4:
Performance Engineering

Jens Zentgraf & Sven Rahmann
GCB 2021




Overview

Saving space

m optimizing the bit-level layout of the hash table
m compact encoding of hash choices and values
m quotienting

Saving time

optimization of hash choices (store many keys at their first choice)
shortcuts for unsuccessful lookups

prefetching

parallelization



PhD / Postdoc position available

at the "Algorithmic Bioinformatics" group, Saarbrucken

algorithm engineering applied to bioinformatics:

e.g., tricks like presented here

novel methods for new problems

desired: algorithm & data structures sKills

desired: programming experience, software development,
or: strong theoretical background

Application areas: pangenomics, cancer, metagenomics
full position (100%), also for PhD students, 3 years
Contact Sven (rahmann@cs.uni-saarland.de)



mailto:rahmann@cs.uni-saarland.de

Saving Space



Bit-level layout of a hash table bucket

Several options to store representation for each (key, value)

P=12

DNA k-mer key needs K=2k bits; value needs v bits

Assume K <64, v <64, cache line = 512 bits

[key1 (64) | value1 (64) | key2 (64) | value2 (64) | ...]

(4 pairs will exactly fit in a cache line; may use padding otherwise)
[key1 (K) | valuel (v) | key2 (K) | value2 (v) | ...]

(more pairs fit into a cache line, need bit operations to extract)

[key1 (K) | key2 (K) | ... | aggregated-values (< bv) ]

(saves space if number of possible values is not a power of 2;

for 5 values, b=3: 5°=125 (7 bits) instead of 3 ceil(log,(9)) bits = 9 bits)



Saving Space with Quotienting: Example

Keys: canonical codes of 25-mers (50 bits)
Values: species (5 classes: 3 bits)

4.5 billion k-mers: reference genomes, alternative alleles, cDNA transcripts:
53 bits per entry, load 0.88: 33.88 GB for hash table @

Quotienting to the rescue:

m Do not store full keys (k-mers), but only "quotients" (here 20 bits),
plus hash function choice (2 bits) plus values (3 bits) — 25 bits per entry:

15.98 GB for hash table &
(could be slightly reduced by higher load, value compression, etc.)



Quotienting: Details

Keys are encoded canonical k-mers (half of set [4] := {0, .., 4%-1}).
Step 1: Bijective randomizing function [4¥] — [4%] with a odd
Ga.b(x) := |a - (rotg(z) xor b)| mod 4k

Step 2: Map to buckets (simply mod p: number of buckets). Define

f(x) = ga,b(x) modp and q(x):= ga’b(x) INp.

Then x can be uniquely reconstructed
from f(x) ("hash value, "bucket number") and q(x) ("fingerprint", "quotient").
Sufficient to store g(x) in bucket f(x) (and which hash function was chosen).



Bit-level layout with quotients and hash choices

m [keyl (K) | valuel (v) | key2 (K) | value2 (v) | ...]

m [quotient1 (Q) | choice1(2) | value1 (v) | quotient2 (Q) | choice2 (2) | value2 (v) | ...]
= [signature1 (Q+2) | value1 (v) | signature2 (Q+2) | value2 (v) | ...]

Save more bits by sorting slots by choice, and only storing choice counts.
Can be combined with compact value storage:

m [choices (£ 2b) | quotient1 (Q) | quotient2 (Q) | ... | values (= bv)]
(requires decoding of the "choices" integer into actual numbers)



To pad or not to pad?

Main decision: pad incomplete 512-bit cache lines or not?
No: some buckets may extend across two cache lines.

256 KiB
L2 \\\\}\}\\\ main —.

\

Va, L1
\ CPU / Cache Cache ach \ memory _—-

NN

2 cendy e’ et o>

This and following illustrations by Uriel Elias Wiebelitz (TU Dortmund)




Cache line

RAM

Cache

L3
Cache




Saving Time



Optimization of the hash function choices

m Idea: Place many k-mers into the bucket of their first hash function.
m Can be written as a minimum weighted bipartite matching problem:

4.5 billions of keys — 100s of millions of buckets
(3 buckets for each key; cost 1, 2, 3)

Solvable exactly within a few hours up to a few days of CPU time.
Can save up to 10 - 15% of running time in a real application (xengsort)
in comparison to hash tables created by "random walk".



Optimization of the hash function choices

2.0 Costs for existing keys

. § Look-up costs (#cache misses)
— b=3 I . .
18] — b=a e for different hash table designs:
— b=s e
— b=6 e m bucketed Cuckoo hashing;
_,_,16‘ — b=7 | . .
@ b m different bucket sizes,
O 4 , m different load factors,
1.41 ---- Random walk A . - .
G -~ S m two insertion strategies.
£
=1
O
1.0 : - - - -
0.5 0.6 0.7 0.8 0.9 1.0
load factor




Speeding up unsuccessful searches

m Bad: unsuccessful key searches always incur h=3 cache misses.
... unless we learn from the first bucket that a search
on the second / third bucket will not be successful.

m lIdea: Reserve bits for each bucket to store information of the following type:
"there is at least one key that would be stored here with its 1st (2nd) choice,
but is stored at its 2nd (3rd) choice."

m Different combinations or resolutions are possible: 3 bits / 2 bits / 1 bit.

m Good speed-up for unsuccessful searches, little additional space cost.
Additional set-up time for computing all the bits after inserting all elements.
m Insertions/deletions of keys invalidate the computed bits.



Prefetching

m Reading random access data rom RAM is slow (200 - 300 CPU cycles).
m Idea: Reduce the waiting period for data stored somewhere in RAM.

m Easy access patterns are prefetched by the hardware
m Linear consecutive access in both directions ([reverse] streaming)
m Regular jumps of fixed width
m Complex patterns need manual prefetching (software prefetching)



Hardware prefetching

\/
\CPU

RAM




Hardware prefetching

oy

RAM




Hardware prefetching

oy

RAM




Hardware prefetching

\/
\CPU

RAM




Hardware prefetching

o1

RAM




Hardware prefetching

RAM

\ cpu /




Hardware prefetching

RAM

\ chu /




Cache friendliness

Cuckoo hashing:

m Searching within a bucket is cache-efficient
m Looking up a bucket is not, but limited to h=3 buckets.

m Also, there is software prefetching !

. 1 MiB 6 MiB
256 KiB nn | _-
L1 L2 N\ L3 ) main
M Cache Cache Cache) memory

2 cd el mew oo



Software prefetching

m CPU instruction
m Can be helpful if used at the right moments
m Can slow down the program

m One instruction more to handle by the CPU
m Still needed data can be removed from the cache

for(int i=0; i<1000; ++i) {
__builtin_prefetch(&arr[i + k]);
++arr[i];

}



Software prefetching in Cuckoo hash tables
Possible strategies

1. Never prefetch

2. Before examining a key's first bucket, prefetch the second bucket.
Before examining the second bucket, prefetch the third bucket.

3. Before examining a key's first bucket, prefetch all other buckets.

4. When examining n keys in a row, during processing key /,
prefetch the first bucket of key i+k, for some offset k.

Any of them may be fastest. Needs benchmarking.
Look-ahead (4.) complicates the implementation.
We first recommend comparing 1. with 2.



Parallelism

m So far only serial algorithms, but modern hardware is multi-core
Also SIMD: single instruction multiple data
(e.g. compute hash functions on multiple k-mers in parallel)

m Parallel lookup is easy:
m only read access
m data does not change

m Parallel write is harder:
m Ensure that the data is always consistent
m Multiple threads write to the same memory location: Synchronisation needed
m Perhaps avoid the possibility of conflicting writes ?



Access without synchronisation

m Both threads check whether the hash thread 1 hash position thread 2
position is empty or not.
Both see that the location is empty.
m Thread one stores key 1.
Thread 2 stores key 2
and overwrites key 1.
m Key 1is lost.




Access with synchronisation

m Try to lock table slot

m As soon as the lock is confirmed:
m change value in slot
m If slotis locked:
m Wait until the lock can be obtained

Large memory overhead if explicit locks
are used for every single slot.

(Don't do this!)

thread 1

try to 1o ck
\ocked
If Q
Mpty,
}
W\

hash position

W

1
& em
chect e
Not
empty

thread 2



Atomic compare-and-swap (CAS) instruction

Can be used to implement lock-free algorithms

Compare content of memory location with an expected value

If the content equals the expected value:

m Store the new value

m Return the old value

Otherwise do nothing.

One atomic CPU instruction, cannot be interrupted by another thread

Positions in a hash table are initialized with 0

Try to store a new key, expected old value is always O
Only store the new key if the slot was empty
Otherwise find a new location.



Alternative: Partition hash table into sub-tables

m one thread responsible for each sub-table
m design hash functions to be consistent within a table

data

hash table 1 hash table 2

/

hash function

hash table 3 V4 N\ hash table 4




Producer-consumer model on partitioned table

producer = - consumer
empty batches




Summary: Performance Engineering

Saving space

m optimizing the bit-level layout of the hash table
m quotienting
m compact encoding of hash choices and values

Saving time

m optimization of hash choices (store many keys at their first choice)
m shortcuts for unsuccessful lookups

m prefetching
m parallelization



