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Hashing
Idea: Store several keys K in space slightly larger than necessary,

   to get fast ("constant-time") access to each key
   (check existence, retrieve associated value, …)

Ingredients:

■ Set ("universe") U of possible keys
■ Set of keys K ⊆ U to be stored, |K| = N
■ Hash table (array) with P slots
■ Hash function  h:  U → {0, … , P - 1} 
■ Collision resolution strategy (details later)



Hashing Example
■ Universe U: all possible first names (of finite length)
■ Set of keys 
■ Hash table with 6 slots
■ Some function h mapping U to {0, 1, 2, 3, 4, 5}.
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Hashing: Collision



Hash functions on DNA (and k-mers)
Definitions (hash function f on k-mers for a hash table of size P):

f : U ➝ {0, 1, …, P-1}

■ P: table (array) size
■ U: universe of all possible keys (here: k-mers for fixed k)
■ In concrete applications, f is restricted to actual key set K ⊆ U, written f |K
■ f(x) = f(y) for x ≠ y: collision occurs, x and y hash to same location (slot)
■ f |K injective (no collisions on K): perfect hashing (usually when P >> |K|)
■ f |K injective and |K|=P: minimal perfect hashing.



Encodings (codes) as hash functions ?
Observations:

■ k-mer encoding, canonical code,
■ any xor-ed (canonical) code with bit mask of 2k bits

are already hash functions of DNA k-mers into {0, 1, …, 4k-1}
(perfect hashing!).

However, requires a huge hash table with 4k slots.
Typically, there are only |K| = n ≪ 4k  k-mers in an observed k-mer set K.

Assumption: Hash table size P with n ≤ P ≪ 4k



Codes mod P as hash functions?
Assumption: Hash table size P with |K| ≤ P ≪ 4k. 

Proposal:  f(x) := ccode(x) mod P   
(remainder of canonical code after division by P)

Properties:

■ good: same hash value for x and x's reverse complement
■ bad: not flexible (no free parameters)
■ bad: may show bias in distribution (non-uniform distribution across slots)

We want close-to-uniform distribution (few collisions),
even if K is an "adversarial" set of k-mers.



Using "standard" hash functions
Idea:

■ Take a general-purpose hash function (for bytes/strings) from the internet
■ Check that it outputs deterministic 64-bit values
■ Take hash value mod P

Examples:

■ MurmurHash2A (https://en.wikipedia.org/wiki/MurmurHash): 64 bits 
■ CityHash (google): on byte arrays (like tabulation hashing)
■ FarmHash (google): on byte arrays (like tabulation hashing)

Note: Non-cryptographic (i.e easily invertible) hash functions are o.k here!

https://en.wikipedia.org/wiki/MurmurHash


Tabulation Hashing
■ Interpret (2k)-bit k-mer as vector of bytes (8-bit units)

e.g. 23-mer = 46 bits = (almost) 6 bytes
■ Write k-mer x = (x0, x1, …, x5) as 6 bytes
■ For each byte i, initialize a random table Ti  of 28 = 256 hash values (64 bits)
■ Compute hash value f(x) :=  (T0[x0] ⊕ T1[x1] ⊕ … ⊕ T5[x5]) mod P



Tabulation Hashing: Notes

■ Compute hash value f(x) :=  (T0[x0] ⊕ T1[x1] ⊕ … ⊕ T5[x5]) mod P
■ Hash values can have any number of bits (typically 64);

operation "mod P" is finally applied to obtain range {0, …, P-1}.
■ Other units than bytes (8 bits) can be used; e.g. 4 bits or 16 bits;

larger units mean much larger (but slightly fewer) tables.
■ strong theoretical properties (3-independence).
■ Disadvantage: Large space requirement for table



ntHash: specialized DNA hashing

■ rolling hash function (like k-mer encoding):
let x1, x2, … be the successive overlapping k-mers
compute hash value H(xi) from: H(xi-1), removed base, new base
by updating in constant time instead of re-reading k basepairs.

■ special form of tabulation hashing:
one table with (specially crafted) "random" hash values for each basepair

■ Update:  H(xi) = rol1(H(xi-1)) ⊕ rolk(h(s[i-1])) ⊕ h(s[i+k-1])
"Hash value for xi is hash value of xi-1, rotated left by 1 bit,
xor-ed with the tabulated value for the outgoing base s[i-1], rotated left by k bits,
then xor-ed with the tabulated value for the incoming base s[i+k-1] as is."

Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, Inanc Birol,  ntHash: recursive nucleotide hashing.
Bioinformatics, Volume 32, Issue 22, 15 November 2016, Pages 3492–3494. (https://doi.org/10.1093/bioinformatics/btw397)

https://doi.org/10.1093/bioinformatics/btw397


Randomized Rotate-Multiply-Offset
Proposal (bit rotation, randomization): Pick two integers

■ multiplier a odd in {1, 3, …, 4k-1},
■ offset b in {0, 1, 2, …, 4k-1};

f(x) := [(a rotk(ccode(x)) + b) mod 4k ] mod P

■ rotk: cyclic rotation by k bits: inner bits outside, outer bits inside.

Good properties:

■ same hash value for x and x's reverse complement
■ The part in [...] is a random bijection on the universe U (if |U| is a power of 2)
■ If biased, just pick different random a, b.



CPU caches



CPU caches

This and following illustrations by Uriel Elias Wiebelitz (TU Dortmund)
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Collisions and strategies of collision resolution
Definition: collision

■ Two different elements are hashed to the same location
■ h(a) = h(b) for a ≠ b

Strategies of collision resolution:

■ Chaining (also: separate chaining)
■ Open addressing (also: closed hashing)



Separate chaining
■ Use one hash function
■ Calculate hash position
■ If a collision occurs:

■ Append new element to a (doubly) linked List



Separate chaining



Separate chaining
■ Insert: O(1)
■ Lookup: O(N)

■ Worst Case: Table degenerates to a single linked list



Open addressing / closed hashing
■ Hash collision is resolved with probing

■ Linear probing
■ Quadratic probing
■ Double hashing

■ Cuckoo hashing
■ Standard
■ Multiple hash functions
■ Using buckets
■ (h,b) Cuckoo hashing



Linear probing
■ One hash function

h: U → {0, … ,P - 1}   
■ Distance c, often c = 1 
■ Hash function 

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

■ Calculate hash position 
■ Check if position is free
■ If         is occupied:

■ Calculate
■ Increase i until an empty slot is found

■ Insert: O(N) worst case
■ Lookup: O(N) worst case
■ Expected case depends on table load

(full slots / table size),
fast if table is close to empty, ≪ 50%
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Linear probing
■ Pros:

■ High performance for low to moderate loads (fill ratios), ≪ 50%

■ Cons:
■ Worst case O(N) insertion and lookup time
■ In practice: slow if the table is loaded > 50%
■ Primary clustering (One collision causes more nearby collisions)



Quadratic probing
■ One hash function

h: U → {0, … ,P - 1}  
■ Distances c1 and c2 

■ Hash function
 

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

■ Calculate hash position 
■ Check if position is free
■ If         is occupied:

■ Calculate
■ Increase i until an empty slot is found

■ Insert: O(N), where N = |K|
■ Lookup: O(N)
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Double hashing
■ Two hash functions

 h1(x) and h2(x) 
■ Hash function

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

■ Calculate hash position 
■ Check if position is free
■ If         is occupied:

■ Calculate
■ Increase i until an empty slot is found

■ Insert: O(N)
■ Lookup: O(N)



Double hashing
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Quadratic probing and double hashing
■ Pro:

■ No primary clustering 
■ High performance for low to moderate loads (fill ratios), ≪ 50%

■ Cons:
■ Worst case O(N) insertion and lookup time
■ In practice: slow if the table is loaded > 50%



Next part:
Multi-way bucketed cuckoo hashing for 

DNA k-mers


