
Fast lightweight accurate xenograft sorting

Jens Zentgraf & Sven Rahmann
Genome Informatics, Institute of Human Genetics
University of Duisburg-Essen, Essen, Germany

WABI 2020, 07.-09. September 2020

(Patient-derived) xenografts

Source: Creative AniModel,
https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

■ tumor cell lines
or patient tumor samples
implanted in mice

■ study tumor heterogeneity,
evolution

■ sequencing of samples
■ mixture of human+mouse DNA
■ First task: separate/sort reads

("xenograft sorting"), or:
extract graft (human) reads

https://www.creative-animodel.com/Featured-Service/Human-Tumor-Xenograft-Model.html

Source: https://public.ornl.gov/site/gallery/originals/
Mouse_and_Human_Genetic_Similarities_-_original.jpg

https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg
https://public.ornl.gov/site/gallery/originals/Mouse_and_Human_Genetic_Similarities_-_original.jpg

Problem: Human-Aligned Mouse Alleles (HAMAs)
■ mouse reads may align to human genome
■ may lead to false human (tumor) variant calls
■ oncogenes particularly prone to this effect

S. Y. Jo, E. Kim, and S. Kim.
Impact of mouse contamination in
genomic profiling of
patient-derived models and best
practice for robust analysis.
Genome Biology, 20(1):Article 231,
Nov 2019.

The xenograft sorting problem
Given: sequenced xenograft sample (reads from two species),

paired-end or single-end,
genomic or transcriptomic reads,

sort the reads into five categories according to species of origin:
host (mouse), graft (human), both, neither, ambiguous

or: partially sort using fewer categories (host, graft, other),
or: count how many reads are in each category,
or: filter (select) only graft (human) reads.

Two kinds of tools: aligned BAM vs. raw FASTQ input

k-mer methods for xenograft sorting
■ Partition each read into its k-mers

■ Look up information on each k-mer in a table
[k-mer ↦ human | mouse | both]

■ Absent k-mers occur in neither species.

■ Aggregate k-mer information into a statement
about the read [e.g., majority vote]

GATTCATGC...
GATTC
 ATTCA
 TTCAT
 TCATG
 CATGC

Goal: "Fast lightweight accurate xenograft sorting"

accurate

fast lightweight

fast:
■ slow random memory accesses
■ 3-way bucketed Cuckoo hashing
■ buckets fit within a cache line

lightweight (small memory footprint):
■ 4.5 billion 25-mers + values
■ high load (little wasted space)
■ quotienting

accurate:
■ identical + highly similar sequences
■ "weak" k-mers
■ multi-level decision rule

■ 3 hash functions:
■ each maps a k-mer to a bucket.
■ Each bucket can store up to 4 elements.
■ Idea: bucket fits within a cache line.

■ 12 possible locations for each element.
■ At worst 3 memory lookups (cache misses),

often only 1 or 2.

3-way Cuckoo hashing with 4-buckets

Insertion by random walk
■ Insert x: try buckets f1(x), f2(x), f3(x) in order;

insert into first bucket with space available.
■ If all full, evict a random element,

place current element into now free slot.
■ Re-insert evicted element into different slot.
■ May cause another eviction…

⇒ random walk through table.
■ Limit length of walk (e.g. 500 steps).

Fail if limit reached.

Speed vs. space: High vs. very high loads
(h,b) = (3,4) allows loads up to 99.9%.

Lower loads offer better choice distribution:
more elements at their first choice;
lower average cost (cache misses).

Placement can be optimized exactly
(Zentgraf et al., ALENEX 2020).

Random walk degrades near 100%.
At 88%, random walk performs ok.

Weak k-mers
Host or graft k-mers with a close neighbor (Hamming distance 1)
in the other species are not as reliable ("weak"):
A single nucleotide variation suffices to switch species.

After building the hash table, we mark weak k-mers.

Value set of size 5: host, weak host, graft, weak graft, both.
Each k-mer in the table has exactly one of these values (3 bits).

Fast method to find the Hamming-1 neighbors of each k-mer (see paper).

Xenome: similar concept with 4 values: host, graft, both, marginal.

Saving space with quotienting
Keys: canonical codes of 25-mers (50 bits)
Values: species (5 classes: 3 bits)

4.5 billion k-mers: reference genomes, alternative alleles, cDNA transcripts:
53 bits per entry, load 0.88: 33.88 GB for hash table 😩

Quotienting to the rescue:

■ Do not store full keys (k-mers), but only "quotients" (here 20 bits),
plus hash function choice (2 bits) plus values (3 bits) → 25 bits per entry:

15.98 GB for hash table 😃
(could be slightly reduced by higher load, value compression, etc.)

Quotienting: Details
Keys are encoded canonical k-mers (half of set [4k] := {0, .., 4k-1}).

Step 1: Bijective randomizing function [4k] ➝ [4k] with a odd

Step 2: Map to buckets (simply mod p: number of buckets). Define

 f(x) := ga,b(x) mod p and q(x) := ga,b(x) // p .
Then x can be uniquely reconstructed
from f(x) ("hash value, "bucket number") and q(x) ("fingerprint", "quotient").
Sufficient to store q(x) in bucket f(x) (and which hash function was chosen).

Build time [min] & space [GB]

xengsort: 1 thread for build, 8 for mark
xenome: 8 (9) threads for build and mark
XenofilteR: 8 threads (bwa index)

Read classification
■ Partition read into its n valid k-mers

■ Look up class of each k-mer and count:
■ h, h': k-mers in read belonging to "host", "weak host"
■ g, g': k-mers in read belonging to "graft", "weak graft"
■ b: k-mers in read belonging to both species
■ x: k-mers in read belonging to neither species

Read classification using (h, h', g, g', b, x; n)

Quick mode heuristic
(inspired by a similar shortcut in kallisto)

■ Examine 3rd and 3rd-last k-mer in read and look up classes.
■ If classes agree, classify read accordingly.
■ Otherwise, count all k-mers and use decision rule tree.

Results: Comparison of tools

Human dataset

GIAB human matepair
dataset (Ashkenazim trio;
1258 million read pairs).

Almost all graft (correct).
"Neither" is mostly PhiX.

Quick mode gives almost
identical results.

Xenome sometimes
says "ambiguous".

Chicken dataset
Illumina-sequenced
chicken genome.

XenofilteR only extracts
graft (human) reads,
remainder not classified.
Finds none (correct).

xengsort:
Almost all neither (correct).

xenome: 10% host, graft, both
(lower specificity).

PDX dataset
174 RNA-seq PDX samples
(human tumor in mouse)
from Jens Siveke,
University Hospital Essen.

XenofilteR only extracts
graft (human) reads,
remainder not classified.

174 PDX datasets: Running times [CPU minutes]

Summary: Fast lightweight xenograft sorting
■ alignment-free approach using 25-mers and decision rule
■ lightweight on CPU resources, using 3-way bucketed Cuckoo hashing
■ Implementation xengsort outperforms xenome;

⅙ of the CPU work, ⅓ of the wall clock time (both 8 threads)
■ Typically it takes the same time just to scan the BAM files (XenofilteR)
■ 25-mer table fits into 16 GB RAM, could be made smaller

(higher load, compacted values and choice indicators).

■ More times [CPU min]
(see paper for datasets)

Summary: Algorithm Engineering for xenograft sorting

■ Hash table
■ 3-way bucketed Cuckoo hashing

(with bucket size 4)
■ Keys reduced using quotienting

(part of key stored in bucket number)
■ Interesting trade offs:

Small buckets = small quotients,
but lower maximum load,
and fewer keys at first hash choice.

■ Several further engineering opportunities
■ Find xengsort at gitlab: https://gitlab.com/genomeinformatics/xengsort/

https://gitlab.com/genomeinformatics/xengsort/

Appendix

Why k = 25 ?

Why (h,b) = (3,4) ?
More hash functions (h), larger buckets (b) have ⊕ and ⊖ effects:

⊕ higher load limit
[only 50% for standard (2,1)]
[over 99.9% for (3,4),
less w/ random walk]

⊖ more worst case cache misses (h)

⊖ more search effort per bucket (b)

■ (3,4) is a good compromise;
maybe also (2,8).

S. Walzer. Load thresholds for cuckoo
hashing with overlapping blocks.
ICALP 2018, LIPIcs 107:102.

b | h

1
2
3
4

