

May 31, 2021

Assignment 7 Algorithms for Sequence Analysis, Summer 2021

Algorithmic Bioinformatics · Prof. Dr. Sven Rahmann

Hand in date: Monday, June 07, before 20:00

Exercise 0: ± 1 **RMQ** (8 Programming)

Remember that the programming task from assignment sheet 6 is also due.

Exercise 1: Rank queries on a C64 (4 Theory)

The Commodore 64 (C64) was an 8-bit home computer. We want to build a rank data structure for the following bit sequence s, using a block size of B = 8 (because that is the register size), and a superblock size of $S = B^2/4 = 16$:

Write down all tables for the succinct rank data structure. How many bits do you need in comparison to the 70 bits for s?

Exercise 2: Wavelet tree (4 Theory) Let $\Sigma := \{a,b,c,d,e,f,g,h\}$. Compute the wavelet tree of

s = dbaggdhcffcbedgfbhbfddged.

Illustrate how to use binary rank queries on the wavelet tree to find

- (a) s[15],
- (b) $\operatorname{rank}_{g}(12)$ in s.

Exercise 3: Fibonacci strings (4 Theory)

The well-known (integer) Fibonacci sequence is defined by the recurrence

 $F_0 := 1,$ $F_1 := 1,$ $F_n := F_{n-2} + F_{n-1}$ for $n \ge 2$.

Similarly, we define the sequence of *Fibonacci strings* by

$$f_0 := a, \qquad f_1 := b, \qquad f_n := f_{n-2}f_{n-1} \text{ for } n \ge 2.$$

It follows that the length of f_n is $|f_n| = F_n$. We have $f_2 = ab$, $f_3 = bab$, $f_4 = abbab$, Note that the concatenation order $(f_{n-2}f_{n-1}$ vs. $f_{n-1}f_{n-2})$ matters. Fibonacci strings are interesting because they contain long repeats and compress well.

- (a) Describe an algorithm that, given n and $k < F_n$, computes $f_n[k]$ efficiently. Your solution should work for large n and k, e.g., what is $f_{1000}[999\,999\,999]$?
- (b) By experimentation, conjecture and proof, determine the maximum lcp value for f_n \$ as a function of n.

Exercise 4: Lempel-Ziv factorizations (4 Theory)

For the Fibonacci string f_6 (length 13), find

- (a) the LZ77 factorization as defined in the lecture, using the suffix tree of f_6 \$,
- (b) the LZ78 factorization as defined in the lecture, by constructing the factor trie.

Show the suffix tree and factor trie, respectively.