
July 12, 2021

Assignment 13
Algorithms for Sequence Analysis, Summer 2021

Algorithmic Bioinformatics · Prof. Dr. Sven Rahmann

Hand in date: Monday, July 19, before 20:00
All of these tasks yield bonus points.

Exercise 1: Bloom filter (4 Theory)

(a) Assume that you have a bloom filter with h hash functions, m bits space and a
load factor of ` (the load factor is the number of 1-bits divided by m). If a random
non-present object is queried, what is the probability of a false positive answer?
Compute this probability in terms of h, m and ` in general, and for h = 4, ` = 0.7
and in the limit of large m.

(b) In the same setting as above, after n elements have been inserted, what is the
expected load factor? Assume that each hash value is completely random. Give a
good approximation of the load factor for n = m/h. (Hint: With each element, we
are setting h bits to 1, but some of them may already have been set to 1 previously.
Remember the Jukes-Cantor correction?)

Exercise 2: Minimizers (4 Theory)
Consider the standard order A < C < G < T.

(a) List all (4,4)-minimizers of the string T = CGATCCTGCACCTCATAG.

(b) List all (5,3)-minimizers of T .

(c) For a fixed k, what values of w guarantee that there are no gaps between two
consecutive minimizers; that is, all letters are covered by at least one minimizer
except at most w − 1 at each end of the string?

Exercise 3: Genome assembly (6 Programming)
Download the assembly puzzle from https://www.rahmannlab.de/talks/puzzle.pdf.
These are 17 double-stranded reads of length 20. The genome has a length of approxi-
mately 100. You may cut out the reads and attempt the puzzle by hand (no points).
Write a program to assemble these reads; choose one assembly paradigm:

• overlap-consensus approach: Compute optimal overlaps between all pairs of reads
(note the two possible different orientations!) and greedly assemble the pair with
the highest overlap score (suggested: match/mismatch/gap: 5,−4,−5). Remove
the two assembled reads and put the new assembled fragment into the pool; repeat
until no good overlaps remain.

https://www.rahmannlab.de/talks/puzzle.pdf


• DBG or k-mer approach. Extract the k-mer set of the reads (suggestion: k = 6
or k = 7), remove k-mers that occur rarely, assemble unitigs (branch-free linear
chains of k-mers). Be careful with the two possible orientations, so it is best to use
canonical k-mer encodings.

In the end, output the assembled genome or the set of assembled contigs. Your imple-
mentation should be accompanied by a report describing the implementation. This can
be done within the code as well (e.g., detailed docstrings).


