

Multiple Sequence Alignment I

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Multiple sequence Alignment

- Basic Definitions
- Why Multiple sequence comparison?
- Multiple Alignment Problem
- Sum-of-Pairs Scores

Algorithms:

- Generalization of the Universal Alignment Algorithm
- The Center Star approximation

Basics

Definition

Multiple Sequence Alignment (MSA) is generalization of pairwise alignment with more than two sequences.

Applications

- Compute motifs (eg. transcription factor binding sites)
- Detect homologous residues and estimate their conservation
- Predict the secondary structures of proteins
- Infer the evolutionary history of the sequences

One or two homologous sequences whisper... a full multiple alignment shouts out loud. (Hubbard et al., 1996)

MSA example (60S acidic ribosomal protein P0)

Q5E940_BOVIN	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYG <mark>S</mark> KQMQQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE	76
RLA0 HUMAN	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE	76
RLA0 MOUSE	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE	76
RLA0_RAT	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AYYLMGKNTMMRKAIRGHLENNPALE	76
RLA0_CHICK	MPREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 RANSY	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNSALE	76
Q7ZUG3_BRARE	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN-PALE	76
RLA0 ICTPU	MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENN-PALE	76
RLA0 DROME	WYRENKAAW <mark>K</mark> AQYFIKYY <mark>E</mark> LFDEF <mark>P</mark> KCFIYGADNYG <mark>S</mark> K <mark>QMQ</mark> NI R TSL RG L-AYYLMGKNTMMR <mark>KAIRGHLE</mark> NN <mark>P</mark> QLE	76
RLA0 DICDI	MSGAG-SKRKKLFIEKATKLFTT YDKMIVAEADFVGS SQLQKIRKS IRGI-GAVLMGKKTMIRKVIRDLADSKPELD	75
Q54LP0_DICDI	MSGAG-SKRKNYFIEKATKLFTTYDKMIYAEADFYG <mark>S</mark> SQLQKIRKSIRGI-GAYLMGKKTMIRKYIRDLADSKPELD	75
RLAO PLAF8	MAKLSKQQK <mark>K</mark> QMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAV-PQIE	76
RLA0_SULAC	MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAGYDTK	79
RLA0 SULTO	MRIMAVITQERKIAKW <mark>K</mark> IEEVKELE <mark>Q</mark> KLRE <mark>Y</mark> HTIIIANI <mark>EGFP</mark> ADKLHDI <mark>R</mark> KKM <mark>RG</mark> M-AEI <mark>KVTKNT</mark> LF <mark>G</mark> IAA <mark>K</mark> NAGLDVS	80
RLA0_SULSO	MKRLALALKORKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAGIDIE	80
RLA0 AERPE	MSVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLELDDN	86
RLA0 PYRAE	-MMLAIGKRRYVRTRQ YP ARKVKIVSEATELLQKYPYVFLFDLHGLS <mark>S</mark> RILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGGIPAE	85
RLA0 METAC	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLGETIP	78
RLA0 METMA	MAEERHHTEHI <mark>P</mark> QW <mark>K</mark> KDEIENIK <mark>E</mark> LIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLGESIP	78
RLA0 ARCFU	MAAVRGSPPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGOMOKIRREFRGK-AEIKVVKNILLERALDALGGDYL	75
RLA0_METKA	MAYKAK <mark>GOPP</mark> SGYE <mark>P</mark> KVAEWKRREVKELKELMDE TENVGLVDLEGIPAPOLOEIRAKLRERDTIIRMSRNTLMRIALEEKLDERPELE	88
RLAO METTH		74
RLA0 METTL	MITAESEHKIAPWKIEEVNKLKELLKNGQIVALVDMMEVPAROLOEIRDKIR-CTMTLKMSRNTLIERAIKEVAEETGNPEFA	82
RLA0 METVA	MIDAKSEHKIAPWKIEEVNALKELLKSANVIALIDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA	82
RLA0 METJA	METKVKAHVAPWKIEEVKTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDKIR-DKVKLRMSRNTLIIRALKEAAEELNNPKLA	81
RLA0 PYRAB	MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAQELGKPELE	77
RLA0 PYRHO	MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAKELGKPELE	77
RLA0 PYRFU	MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQELGKPELE	77
RLA0 PYRKO	MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQELGOPELE	76
RLA0 HALMA	MSAESERKTETIPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVDDGLE	79
RLA0 HALVO	MSESEVRQTEVIPQWKREEVDELVDFIESYESVGVVGVAGIPSRQLQSMRRELHGS-AAVRMSRNTLVNRALDEVNDGFE	79
RLA0 HALSA	MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAGDGLD	79
RLA0 THEAC	MKEVSQQKKELVNEITORIKASRSVAIVDTAGIRTROIODIRGKNRGK-INLKVIKKTLLFKALENLGDEKLS	72
RLA0 THE VO		72
RLA0_PICTO		72
ruler	$1 \dots \dots 10 \dots \dots 20 \dots \dots 30 \dots \dots 40 \dots \dots 50 \dots \dots 60 \dots \dots 70 \dots \dots 80 \dots \dots 90$	

By Miguel Andrade, CC-BY-SA 3.0, wikipedia: RPLP0 90 ClustalW aln.gif

Definition

Multiple Alignment Alphabet

- Let Σ be the character alphabet.
- Then A(k) := (Σ ∪ {−})^k \ {(−)^k} is the multiple alignment alphabet of k sequences.

Example

For k = 3 and $\Sigma = \{A, G\}$, there are 26 elements:

Global MSA

Global Multiple Sequence Alignment (MSA)

A global multiple alignment A of $s_1, \ldots, s_k \in \Sigma^*$ is a sequence over $\mathcal{A}(k)$ with projections $\pi_{\{i\}}(A) = s_i$ for all i = 1, ..., k.

Definition: Projections

The projection $\pi_{\{i\}}$ of an alignment column *c* to the *i*th sequence is the function $\mathcal{A}(k) \to \Sigma^{?} := \Sigma^{0} \cup \Sigma^{1}$ with

$$\pi_{\{i\}}(\boldsymbol{c} = \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix}) := egin{cases} \mathrm{a}_i & ext{if } \mathrm{a}_i \neq -, \\ \epsilon & ext{if } \mathrm{a}_i = -. \end{pmatrix}$$

The **projection** of a **multiple sequence alignment** $A = c_1 \cdots c_n$ to sequence *i* is the concatenation of the projections of the respective columns:

$$\pi_{\{i\}}(A = (c_1, \ldots, c_n)) := \pi_{\{i\}}(c_1) \cdots \pi_{\{i\}}(c_n).$$

Projection to Index Set

Definition

The projection $\pi_{\mathcal{I}}$ of an alignment column *c* to the index set $\mathcal{I} = \{i_1, \ldots, i_q\}$ is the function $\mathcal{A}(k) \to \mathcal{A}(q)$? with:

$$\pi_{\mathcal{I}}(c = \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix}) := \begin{cases} \epsilon & \text{if } \begin{pmatrix} a_{i_1} \\ \vdots \\ a_{i_q} \end{pmatrix} = \begin{pmatrix} - \\ \vdots \\ - \end{pmatrix}, \\ \begin{pmatrix} a_{i_1} \\ \vdots \\ a_{i_q} \end{pmatrix} & \text{otherwise.} \end{cases}$$

The projection of a multiple sequence alignment $A = c_1 \cdots c_n$ to index set \mathcal{I} is the concatenation of the projections of the respective columns:

$$\pi_{\mathcal{I}}(A) = \pi_{\mathcal{I}}(c_1) \cdots \pi_{\mathcal{I}}(c_n).$$

Example

$$A = \begin{pmatrix} - & A & C & C & - & - & A & T & G \\ - & A & - & C & G & A & A & T & - \\ T & A & C & C & - & - & A & G & G \\ - & A & - & C & C & A & A & T & G \end{pmatrix}$$

Example

$$A = \begin{pmatrix} - & A & C & C & - & - & A & T & G \\ - & A & - & C & G & A & A & T & - \\ T & A & C & C & - & - & A & G & G \\ - & A & - & C & C & A & A & T & G \end{pmatrix}$$

$$\pi_{\{1,2\}}(\mathcal{A})=egin{pmatrix} \mathcal{A} & \mathcal{C} & \mathcal{C} & - & - & \mathcal{A} & \mathcal{T} & \mathcal{G} \ \mathcal{A} & - & \mathcal{C} & \mathcal{G} & \mathcal{A} & \mathcal{A} & \mathcal{T} & - \end{pmatrix}$$

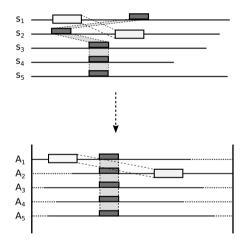
Example

$$A = \begin{pmatrix} - & A & C & C & - & - & A & T & G \\ - & A & - & C & G & A & A & T & - \\ T & A & C & C & - & - & A & G & G \\ - & A & - & C & C & A & A & T & G \end{pmatrix}$$

$$\pi_{\{1,2\}}(\mathcal{A})=egin{pmatrix} \mathcal{A} & \mathcal{C} & \mathcal{C} & - & - & \mathcal{A} & \mathcal{T} & \mathcal{G} \ \mathcal{A} & - & \mathcal{C} & \mathcal{G} & \mathcal{A} & \mathcal{A} & \mathcal{T} & - \end{pmatrix}$$

$$\pi_{\{3,4\}}(A) = \begin{pmatrix} T & A & C & C & - & - & A & G & G \\ - & A & - & C & C & A & A & T & G \end{pmatrix}$$

Why multiple sequence comparison



Why multiple sequence comparison

Pairiwse alignment ambiguities may be resolved by additional information.

Example

 $s_1 = \mathtt{VIEQLA}$ and $s_2 = \mathtt{VINLA}$ may be aligned in the two different ways:

$$A_1 = \begin{pmatrix} V & I & E & Q & L & A \\ V & I & N & - & L & A \end{pmatrix}$$

and

$$A_2 = \begin{pmatrix} V & I & E & Q & L & A \\ V & I & - & N & L & A \end{pmatrix}$$

Additional sequence $s_3 = VINQLA$ shows that alignment A_1 is probably the correct one.

Multiple Alignment Problem

Multiple Sequence Alignment Problem

Given k sequences $s_1, s_2, ..., s_k$ and alignment score (cost) function S (D), find an alignment A^{opt} of $s_1, s_2, ..., s_k$ such that $S(A^{\text{opt}})$ is maximal ($D(A^{\text{opt}})$ is minimal) among all possible alignments of $s_1, s_2, ..., s_k$.

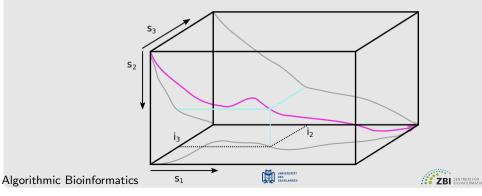
Such an alignment A^{opt} is called an **optimal alignment**, and $S(s_1, s_2, ..., s_k) := S(A^{\text{opt}})$ is the **optimal alignment score** and $D(s_1, s_2, ..., s_k) := D(A^{\text{opt}})$ is the **optimal alignment cost** of $s_1, s_2, ..., s_k$.

(Weighted) Sum-of-Pairs Score (Cost)

Definition

Score a multiple alignment by the sum of scores of all pairwise projections.

$$S_{[\mathsf{W}]\mathsf{SP}}(A) := \sum_{1 \leq p < q \leq k} [w_{p,q}] \cdot S(\pi_{\{p,q\}}(A))$$



Example: Weighted Cost of an Alignment

[Weighted] Cost/Distance

$$D_{[\mathsf{W}]\mathsf{SP}}(A) := \sum_{1 \leq p < q \leq k} [w_{p,q}] \cdot D(\pi_{\{p,q\}}(A))$$

Let
$$s_1 = CGCTT$$
, $s_2 = ACGGT$, $s_3 = GCTGT$.

$$A_{2} = \begin{pmatrix} C & G & C & T & - & T \\ - & A & C & G & G & T \\ - & G & C & T & G & T \end{pmatrix}$$

Let *D* be the unit cost edit distance. Then $D_{SP}(A) = 4 + 2 + 2 = 8$, and $D_{WSP}(A) = 4w_{1,2} + 2w_{1,3} + 2w_{2,3}$.

Example: Sum-of-Pairs MSA

Let $s_1 = CGCG$, $s_2 = ACGC$ and $s_3 = GCGA$. In a unit cost scenario, the (only) optimal alignment of s_1 and s_2 is:

$$A^{(1,2)} = \begin{pmatrix} - & C & G & C & G \\ A & C & G & C & - \end{pmatrix}$$

with cost $D(A^{(1,2)}) = 2$. The (only) optimal alignment of s_1 and s_3 is

$$A^{(1,3)} = \begin{pmatrix} C & G & C & G & - \\ - & G & C & G & A \end{pmatrix}$$

with cost $D(A^{(1,3)}) = 2$.

Example: Sum-of-Pairs MSA

Combining the two alignments into one multiple alignment, using the common sequence s_1 as seed, yields the multiple alignment

$$\mathcal{A}^{((1,2),(1,3))} = egin{pmatrix} - & C & G & C & G & - \ \mathcal{A} & C & G & C & - & - \ - & - & G & C & G & \mathcal{A} \end{pmatrix}$$

with cost $D(A^{((1,2),(1,3))}) = 2 + 2 + 4 = 8$.

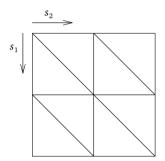
However, this is not the sum-of-pairs optimal alignment, which is

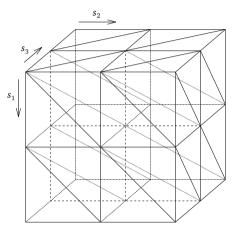
$$A^{\text{opt}} = \begin{pmatrix} - & C & G & C & G \\ A & C & G & C & - \\ G & C & G & A & - \end{pmatrix}$$

with cost $D(A^{opt}) = 2 + 3 + 2 = 7$.

Algorithms for Sum-of-Pairs Multiple Alignment

Alignment Graph: From 2 to k Dimensions





An Exact Solution: Universal Alignment Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment can be generalized for the multiple alignment of k sequences $s_1, s_2, ..., s_k$ of lengths $n_1, n_2, ..., n_k$, respectively.

An Exact Solution: Universal Alignment Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment can be generalized for the multiple alignment of k sequences $s_1, s_2, ..., s_k$ of lengths $n_1, n_2, ..., n_k$, respectively.

- k-dimensional weighted edit graph
- Edge e corresponds to a possible alignment column c
- Each edge weighted by its corresponding alignment score w(e) = S(c)
- Optimal alignment = maximum scoring path from source to sink.

An Exact Solution: Universal Alignment Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment can be generalized for the multiple alignment of k sequences $s_1, s_2, ..., s_k$ of lengths $n_1, n_2, ..., n_k$, respectively.

- k-dimensional weighted edit graph
- Edge e corresponds to a possible alignment column c
- Each edge weighted by its corresponding alignment score w(e) = S(c)
- Optimal alignment = maximum scoring path from source to sink.

Minimization version

For each vertex \boldsymbol{v} in the edit graph in topological order:

$$D(v) = \min\{D(v') + w(v' \to v) \mid v' \text{ is a predecessor of } v\}.$$

Universal Algorithm Explicitly

D(0, 0, ..., 0) = 0 and $D(\overbrace{i_1,i_2,...,i_k}^{\mathbf{v}}) = \min_{\substack{\Delta_1,...,\Delta_k \in \{0,1\}\\\Delta_1+\dots+\Delta_k = 0}}$ $\left\{ D(\overbrace{i_1 - \Delta_1, i_2 - \Delta_2, \dots, i_k - \Delta_k}^{\text{predecessor } v'}) + D_{\text{SP}} \overbrace{\begin{pmatrix} \Delta_1 s_1[i_1 - 1] \\ \vdots \\ \Delta_k s_k[i_k - 1] \end{pmatrix}}^{\text{alignm.col.}} \right\}.$

Notation: For $c \in \Sigma$, let $\Delta c := c$ if $\Delta = 1$ and $\Delta c = " - "$ if $\Delta = 0$.

Universal Algorithm Explicitly

D(0, 0, ..., 0) = 0 and $D(\overbrace{i_1,i_2,...,i_k}^{v}) = \min_{\substack{\Delta_1,...,\Delta_k \in \{0,1\}\\\Delta_1+\cdots+\Delta_k \neq 0}}$ $\left\{ D(\overbrace{i_1 - \Delta_1, i_2 - \Delta_2, \dots, i_k - \Delta_k}^{\text{predecessor } \nu'}) + D_{\text{SP}} \overbrace{\begin{pmatrix} \Delta_1 s_1[i_1 - 1] \\ \vdots \\ \Delta_k s_k[i_k - 1] \end{pmatrix}}^{\text{alignm.col.}} \right\}.$

Notation: For $c \in \Sigma$, let $\Delta c := c$ if $\Delta = 1$ and $\Delta c = " - "$ if $\Delta = 0$.

Observation: In general, a node has $2^k - 1$ predecessors.

Space Complexity

The space complexity is the size of the k-dimensional edit graph: $O(n_1n_2...n_k) = O(n^k)$ if n is the maximum sequence length.

Space Complexity

The space complexity is the size of the k-dimensional edit graph: $O(n_1n_2...n_k) = O(n^k)$ if n is the maximum sequence length. We can save one dimension if we do not need traceback: $O(n^{k-1})$.

Space Complexity

The space complexity is the size of the k-dimensional edit graph: $O(n_1n_2...n_k) = O(n^k)$ if n is the maximum sequence length. We can save one dimension if we do not need traceback: $O(n^{k-1})$.

Time Complexity

- $O(n^k)$ nodes to compute
- For each node: minimization/maximization over $O(2^k)$ predecessors
- For each predecessor: Compute edge cost/score: $O(k^2)$ (sum-of-pairs)

Total (for linear gap costs): $O((2n)^k \cdot k^2)$

Space Complexity

The space complexity is the size of the k-dimensional edit graph: $O(n_1n_2...n_k) = O(n^k)$ if n is the maximum sequence length. We can save one dimension if we do not need traceback: $O(n^{k-1})$.

Time Complexity

- $O(n^k)$ nodes to compute
- For each node: minimization/maximization over $O(2^k)$ predecessors
- For each predecessor: Compute edge cost/score: $O(k^2)$ (sum-of-pairs)

Total (for linear gap costs): $O((2n)^k \cdot k^2)$

NP Hardness

Optimal Multiple Alignment with both weighted and unweighted sum-of-pairs score (or distance) is an NP-hard optimization problem in k (Wang and Jiang, 1994).

Approximation Algorithms

c-approximation, $c \geq 1$

For $c \ge 1$, an algorithm for a cost or distance minimization problem is a *c*-approximation if its output solution has cost at most *c* times the optimal solution:

 $output \leq c \cdot opt_{\min}$

For a maximization problem, an algorithm is called a *c*-approximation if its output solution has score at least $\frac{1}{c}$ times the optimal solution:

 $output \ge opt_{\max}/c$

Approximation Algorithms

c-approximation, $c \geq 1$

For $c \ge 1$, an algorithm for a cost or distance minimization problem is a *c*-approximation if its output solution has cost at most *c* times the optimal solution:

 $output \leq c \cdot opt_{\min}$

For a maximization problem, an algorithm is called a *c*-approximation if its output solution has score at least $\frac{1}{c}$ times the optimal solution:

 $\mathit{output} \geq \mathit{opt}_{\mathsf{max}}/c$

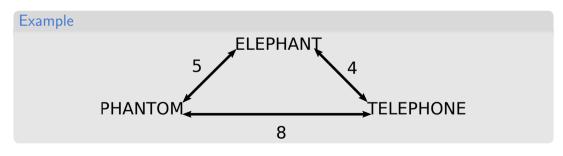
Opinion

Theoretical computer scientists like approximation algorithms. I don't: Even a 2-approximation algorithm is bad in practice (in the worst case). Good: $(1 + \epsilon)$ approximation algorithm for every ϵ , polynomial time.

The Center Star Approximation

Algorithm

The center star algorithm (Gusfield, 1991, 1993) is a 2-approximation for the sum-of-pairs distance multiple alignment problem if the underlying weighted edit distance satisfies the triangle inequality.



The Center Star Approximation

Overall distance

For each sequence s_p , $1 \le p \le k$, its total distance d_p to the other sequences is the sum of the pairwise optimal alignment costs:

$$d_p = \sum_{1 \leq q \leq k} d(s_p, s_q)$$

Idea

let s_c be the sequence that minimizes this overall distance, called **center sequence**. A multiple alignment A_c is constructed from all pairwise optimal alignments where the center sequence is involved, i.e., all the optimal alignments of s_c and the other s_p , $p \neq c$, are combined into one multiple alignment A_c .

Theorem

The Center Star algorithm is a 2-approximation for the optimal sum-of-pairs multiple alignment: $D_{SP}(A_c) \leq 2 \cdot D_{SP}(A^*)$.

Theorem

The Center Star algorithm is a 2-approximation for the optimal sum-of-pairs multiple alignment: $D_{SP}(A_c) \leq 2 \cdot D_{SP}(A^*)$.

Proof.

Write D_{ij}^c for the cost of the induced pairwise alignment $\pi_{\{i,j\}}(A^c)$, and D_{ij}^* for A^* . Write $d(s_i, s_j)$ for the (optimal) pairwise distance between s_i and s_j .

Lemma: $D_{ij}^c \leq d(s_i, s_c) + d(s_c, s_j)$ for all i, j (proof follows).

Theorem

The Center Star algorithm is a 2-approximation for the optimal sum-of-pairs multiple alignment: $D_{SP}(A_c) \leq 2 \cdot D_{SP}(A^*)$.

Proof.

Write D_{ij}^c for the cost of the induced pairwise alignment $\pi_{\{i,j\}}(A^c)$, and D_{ij}^* for A^* . Write $d(s_i, s_j)$ for the (optimal) pairwise distance between s_i and s_j .

Lemma: $D_{ij}^c \leq d(s_i, s_c) + d(s_c, s_j)$ for all i, j (proof follows).

Then, $2D_{\text{SP}}(A_c) = \sum_{i \neq j} D_{ij}^c \leq \sum_{i \neq j} [d(s_i, s_c) + d(s_c, s_j)] = 2(k-1) \cdot \sum_{j \neq c} d(s_c, s_j)$. Also, $2D_{\text{SP}}(A^*) = \sum_{i \neq j} D_{ij}^* \geq \sum_{i \neq j} d(s_i, s_j) = \sum_i \sum_{j \neq i} d(s_i, s_j) \geq k \cdot \sum_{j \neq c} d(s_c, s_j)$ by the choice of c.

Theorem

The Center Star algorithm is a 2-approximation for the optimal sum-of-pairs multiple alignment: $D_{SP}(A_c) \leq 2 \cdot D_{SP}(A^*)$.

Proof.

Write D_{ij}^c for the cost of the induced pairwise alignment $\pi_{\{i,j\}}(A^c)$, and D_{ij}^* for A^* . Write $d(s_i, s_j)$ for the (optimal) pairwise distance between s_i and s_j .

Lemma: $D_{ij}^c \leq d(s_i, s_c) + d(s_c, s_j)$ for all i, j (proof follows).

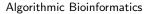
Then, $2D_{\text{SP}}(A_c) = \sum_{i \neq j} D_{ij}^c \leq \sum_{i \neq j} [d(s_i, s_c) + d(s_c, s_j)] = 2(k-1) \cdot \sum_{j \neq c} d(s_c, s_j)$. Also, $2D_{\text{SP}}(A^*) = \sum_{i \neq j} D_{ij}^* \geq \sum_{i \neq j} d(s_i, s_j) = \sum_i \sum_{j \neq i} d(s_i, s_j) \geq k \cdot \sum_{j \neq c} d(s_c, s_j)$ by the choice of c.

It follows that $D_{\text{SP}}(A_c)/D_{\text{SP}}(A^*) \leq 2(k-1)/k \leq 2$ for any k.

Proof of Lemma

Lemma

 $D_{ij}^c \leq d(s_i,s_c) + d(s_c,s_j)$ for all i,j



Proof of Lemma

Lemma

$$D_{ij}^c \leq d(s_i,s_c) + d(s_c,s_j)$$
 for all i,j

Proof.

Because the cost function satisfies the triangle inequality, we have for all i, j:

 $D_{ij}^c \leq D_{ic}^c + D_{cj}^c.$

Because the induced alignments involving the center sequence are by construction optimal, we have $D_{ic}^{c} = d(s_i, s_c)$ and $D_{cj}^{c} = d(s_c, s_j)$. The lemma follows.

Time and Space Complexity

Time complexity

- Phase 1: Compute $\binom{k}{2}$ pairwise alignments; pick center: $O(k^2n^2)$
- Phase 2: Combine k 1 alignments into one multiple alignment: $O(k^2 n)$
- Overall running time: $O(k^2n^2)$

Time and Space Complexity

Time complexity

- Phase 1: Compute $\binom{k}{2}$ pairwise alignments; pick center: $O(k^2n^2)$
- Phase 2: Combine k 1 alignments into one multiple alignment: $O(k^2 n)$
- Overall running time: $O(k^2n^2)$

Space complexity

- $\mathcal{O}(n+k)$ for computing and storing k computed values of d_p
- \$\mathcal{O}(k^2n)\$ to store k pairwise alignments and intermediate/final multiple alignments (size of multiple alignment: up to \$O(nk)\$ columns, typically only \$O(n)\$)
- Overall space complexity: $\mathcal{O}(k^2n)$

Multiple Sequence Alignment (MSA)

- Sum-of-pairs objective function
- Universal DP algorithm: exponential space and time in k; NP-hard
- The Center Star 2-approximation: $O(n^2k^2)$ time, $O(k^2n)$ space

Possible Exam Questions

- Define a global multiple sequence alignment (MSA).
- What is the advantage of an MSA compared to a pairwise alignment?
- Define the sum-of-pairs objective for MSA.
- Do you know an algorithm to find the optimal MSA (wrt this objective)?
- What is its time and space complexity?
- Is there an exact algorithm with running time polynomial in the number of sequences k?
- What is an approximation algorithm?
- Explain the Center Star algorithm and its assumptions.
- What is its running time?
- Can you sketch the ideas for proving it to be a 2-approximation?