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Basics

Definition

Multiple Sequence Alignment (MSA) is generalization of pairwise alignment
with more than two sequences.

Applications

Compute motifs (eg. transcription factor binding sites)

Detect homologous residues and estimate their conservation

Predict the secondary structures of proteins

Infer the evolutionary history of the sequences

One or two homologous sequences whisper...
a full multiple alignment shouts out loud. (Hubbard et al., 1996)
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MSA example (60S acidic ribosomal protein P0)

By Miguel Andrade, CC-BY-SA 3.0, wikipedia:RPLP0 90 ClustalW aln.gif
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Definition

Multiple Alignment Alphabet

Let Σ be the character alphabet.

Then A(k) := (Σ ∪ {−})k \ {(−)k} is the multiple alignment alphabet
of k sequences.

Example

For k = 3 and Σ = {A, G}, there are 26 elements:

A(3) =

A A A A A A A A A . . .
A A A G G G - - - . . .
A G - A G - A G - . . .



Algorithmic Bioinformatics 5



Global MSA

Global Multiple Sequence Alignment (MSA)

A global multiple alignment A of s1, . . . , sk ∈ Σ∗ is a sequence over A(k)
with projections π{i}(A) = si for all i = 1, ..., k.

Definition: Projections

The projection π{i} of an alignment column c to the i th sequence

is the function A(k)→ Σ? := Σ0 ∪ Σ1 with

π{i}(c =

( a1...
ak

)
) :=

{
ai if ai 6= −,

ε if ai = −.

The projection of a multiple sequence alignment A = c1 · · · cn to sequence i
is the concatenation of the projections of the respective columns:

π{i}(A = (c1, . . . , cn)) := π{i}(c1) · · · π{i}(cn) .
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Projection to Index Set

Definition

The projection πI of an alignment column c to the index set I = {i1, . . . , iq}
is the function A(k)→ A(q)? with:

πI(c =

( a1...
ak

)
) :=


ε if

( ai1...
aiq

)
=

(−
...
−

)
,( ai1...

aiq

)
otherwise.

The projection of a multiple sequence alignment A = c1 · · · cn to index set I
is the concatenation of the projections of the respective columns:

πI(A) = πI(c1) · · ·πI(cn) .
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Example

A =


− A C C − − A T G
− A − C G A A T −
T A C C − − A G G
− A − C C A A T G



π{1,2}(A) =

(
A C C − − A T G
A − C G A A T −

)

π{3,4}(A) =

(
T A C C − − A G G
− A − C C A A T G

)
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Why multiple sequence comparison

s1
s2
s3
s4
s5

A1

A2

A3

A4

A5
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Why multiple sequence comparison

Pairiwse alignment ambiguities may be resolved by additional information.

Example

s1 = VIEQLA and s2 = VINLA may be aligned in the two different ways:

A1 =

(
V I E Q L A
V I N − L A

)
and

A2 =

(
V I E Q L A
V I − N L A

)
Additional sequence s3 = VINQLA shows that alignment A1 is probably the correct one.
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Multiple Alignment Problem

Multiple Sequence Alignment Problem

Given k sequences s1, s2, ..., sk and alignment score (cost) function S (D), find an
alignment Aopt of s1, s2, ..., sk such that S(Aopt) is maximal (D(Aopt) is minimal)
among all possible alignments of s1, s2, ..., sk .

Such an alignment Aopt is called an optimal alignment, and
S(s1, s2, ..., sk) := S(Aopt) is the optimal alignment score and
D(s1, s2, ..., sk) := D(Aopt) is the optimal alignment cost of s1, s2, ..., sk .
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(Weighted) Sum-of-Pairs Score (Cost)

Definition

Score a multiple alignment by the sum of scores of all pairwise projections.

S[W]SP(A) :=
∑

1≤p<q≤k
[wp,q] · S(π{p,q}(A))

s1

s2

s3

i3
i2
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Example: Weighted Cost of an Alignment

[Weighted] Cost/Distance

D[W]SP(A) :=
∑

1≤p<q≤k
[wp,q] · D(π{p,q}(A))

Let s1 = CGCTT, s2 = ACGGT, s3 = GCTGT.

A2 =

C G C T − T
− A C G G T
− G C T G T


Let D be the unit cost edit distance.
Then DSP(A) = 4 + 2 + 2 = 8,
and DWSP(A) = 4w1,2 + 2w1,3 + 2w2,3.
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Example: Sum-of-Pairs MSA

Let s1 = CGCG, s2 = ACGC and s3 = GCGA.
In a unit cost scenario, the (only) optimal alignment of s1 and s2 is:

A(1,2) =

(
− C G C G
A C G C −

)
with cost D(A(1,2)) = 2.
The (only) optimal alignment of s1 and s3 is

A(1,3) =

(
C G C G −
− G C G A

)
with cost D(A(1,3)) = 2.
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Example: Sum-of-Pairs MSA

Combining the two alignments into one multiple alignment,
using the common sequence s1 as seed, yields the multiple alignment

A((1,2),(1,3)) =

− C G C G −
A C G C − −
− − G C G A


with cost D(A((1,2),(1,3))) = 2 + 2 + 4 = 8.
However, this is not the sum-of-pairs optimal alignment, which is

Aopt =

− C G C G
A C G C −
G C G A −


with cost D(Aopt) = 2 + 3 + 2 = 7.
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Algorithms for Sum-of-Pairs Multiple Alignment
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Alignment Graph: From 2 to k Dimensions

s2

s1

s2

s3

s1
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An Exact Solution: Universal Alignment Algorithm

The Needleman-Wunsch algorithm for pairwise global alignment
can be generalized for the multiple alignment of k sequences s1, s2, ..., sk
of lengths n1, n2, ..., nk , respectively.

k-dimensional weighted edit graph

Edge e corresponds to a possible alignment column c

Each edge weighted by its corresponding alignment score w(e) = S(c)

Optimal alignment = maximum scoring path from source to sink.

Minimization version

For each vertex v in the edit graph in topological order:

D(v) = min{D(v ′) + w(v ′ → v) | v ′ is a predecessor of v}.
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Universal Algorithm Explicitly

D(0, 0, ..., 0) = 0 and

D(

v︷ ︸︸ ︷
i1, i2, ..., ik) = min

∆1,...,∆k∈{0,1}
∆1+···+∆k 6=0D(

predecessor v ′︷ ︸︸ ︷
i1 −∆1, i2 −∆2, . . . , ik −∆k) + DSP

alignm.col .︷ ︸︸ ︷(
∆1s1[i1−1]

...
∆k sk [ik−1]

) .

Notation: For c ∈ Σ, let ∆c := c if ∆ = 1 and ∆c = ”− ” if ∆ = 0.

Observation: In general, a node has 2k − 1 predecessors.
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Space and Time Complexity of Sum-of-Pairs Multiple Alignment

Space Complexity

The space complexity is the size of the k-dimensional edit graph:
O(n1n2 . . . nk) = O(nk) if n is the maximum sequence length.

We can save one dimension if we do not need traceback: O(nk−1).

Time Complexity

O(nk) nodes to compute

For each node: minimization/maximization over O(2k) predecessors

For each predecessor: Compute edge cost/score: O(k2) (sum-of-pairs)

Total (for linear gap costs): O((2n)k · k2)

NP Hardness

Optimal Multiple Alignment with both weighted and unweighted sum-of-pairs score
(or distance) is an NP-hard optimization problem in k (Wang and Jiang, 1994).
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Approximation Algorithms
c-approximation, c ≥ 1

For c ≥ 1, an algorithm for a cost or distance minimization problem is a
c-approximation if its output solution has cost at most c times the optimal solution:

output ≤ c · optmin

For a maximization problem, an algorithm is called a c-approximation if its output
solution has score at least 1

c times the optimal solution:

output ≥ optmax/c

Opinion

Theoretical computer scientists like approximation algorithms. I don’t:
Even a 2-approximation algorithm is bad in practice (in the worst case).
Good: (1 + ε) approximation algorithm for every ε, polynomial time.
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The Center Star Approximation

Algorithm

The center star algorithm (Gusfield, 1991, 1993) is a 2-approximation
for the sum-of-pairs distance multiple alignment problem
if the underlying weighted edit distance satisfies the triangle inequality.

Example

ELEPHANT

TELEPHONEPHANTOM

45

8
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The Center Star Approximation

Overall distance

For each sequence sp, 1 ≤ p ≤ k , its total distance dp to the other sequences
is the sum of the pairwise optimal alignment costs:

dp =
∑

1≤q≤k
d(sp, sq)

Idea

let sc be the sequence that minimizes this overall distance, called center sequence.
A multiple alignment Ac is constructed from all pairwise optimal alignments where the
center sequence is involved, i.e., all the optimal alignments of sc and the other sp,
p 6= c, are combined into one multiple alignment Ac .
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Center Star Theorem

Theorem

The Center Star algorithm is a 2-approximation for the optimal sum-of-pairs multiple
alignment: DSP(Ac) ≤ 2 · DSP(A∗).

Proof.

Write Dc
ij for the cost of the induced pairwise alignment π{i ,j}(A

c), and D∗ij for A∗.
Write d(si , sj) for the (optimal) pairwise distance between si and sj .

Lemma: Dc
ij ≤ d(si , sc) + d(sc , sj) for all i , j (proof follows).

Then, 2DSP(Ac) =
∑

i 6=j D
c
ij ≤

∑
i 6=j [d(si , sc) + d(sc , sj)] = 2(k − 1) ·

∑
j 6=c d(sc , sj).

Also, 2DSP(A∗) =
∑

i 6=j D
∗
ij ≥

∑
i 6=j d(si , sj) =

∑
i

∑
j 6=i d(si , sj) ≥ k ·

∑
j 6=c d(sc , sj)

by the choice of c .

It follows that DSP(Ac)/DSP(A∗) ≤ 2(k − 1)/k ≤ 2 for any k .
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Proof of Lemma

Lemma

Dc
ij ≤ d(si , sc) + d(sc , sj) for all i , j

Proof.

Because the cost function satisfies the triangle inequality, we have for all i , j :

Dc
ij ≤ Dc

ic + Dc
cj .

Because the induced alignments involving the center sequence are by construction
optimal, we have Dc

ic = d(si , sc) and Dc
cj = d(sc , sj). The lemma follows.
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Time and Space Complexity

Time complexity

Phase 1: Compute
(k

2

)
pairwise alignments; pick center: O(k2n2)

Phase 2: Combine k − 1 alignments into one multiple alignment: O(k2n)

Overall running time: O(k2n2)

Space complexity

O(n + k) for computing and storing k computed values of dp

O(k2n) to store k pairwise alignments and intermediate/final multiple alignments
(size of multiple alignment: up to O(nk) columns, typically only O(n))

Overall space complexity: O(k2n)
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Summary

Multiple Sequence Alignment (MSA)

Sum-of-pairs objective function

Universal DP algorithm: exponential space and time in k; NP-hard

The Center Star 2-approximation: O(n2k2) time, O(k2n) space
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Possible Exam Questions

Define a global multiple sequence alignment (MSA).

What is the advantage of an MSA compared to a pairwise alignment?

Define the sum-of-pairs objective for MSA.

Do you know an algorithm to find the optimal MSA (wrt this objective)?

What is its time and space complexity?

Is there an exact algorithm with running time
polynomial in the number of sequences k?

What is an approximation algorithm?

Explain the Center Star algorithm and its assumptions.

What is its running time?

Can you sketch the ideas for proving it to be a 2-approximation?


