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Overview

Introduction to genome assembly, repeat problem

The overlap-layout-consensus (OLC) approach

definition of overlap graph
computation (many pairwise overlaps); reduction
overlap: Hamitonian path problem

The de Bruijn graph (DBG) or k-mer approach

simplification
error correction in the graph
traversal of de Bruijn graphs
representations of de Bruijn graphs (k-mer sets):
– hash tables
– bloom filters (inexact vs. exact)

Evaluation metrics for assemblies (e.g., N50)

Error correction before graph construction
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Genome Assembly

Meyerson et al., Nat Rev Genet. (2010).
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Genome Assembly
Definition?

Assembly is reconstruction of (long) DNA fragments from sequencing reads.
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Genome Assembly: Challenging to Define the Objectives

Definition?

Assembly is reconstruction of (long) DNA fragments from sequencing reads.

Possible Criteria

Reads should be approximate substrings of assembled fragments.

Assembly should be “short”, but not “overcompressed”.

Assembly should consist of few independent pieces.

On the other hand, no arbitrary decisions should be made.
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Fundamental Problem for Assembly: Repeats

repeat copies

>50% of the human genome (by position) is some kind of repeat.

Human repeat classes (examples):

short tandem repeat (ATATATATAT)

SINE (about 300bp)

LINE (about 7000bp)

ribosomal DNA (rDNA): tandem repeat clusters with ∼43kb units

gene families (duplicated throughout evolution)

segmental duplications (>1000 bp and >90% identity)
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Two Main Approaches

Overlap graphs

Nodes are reads.

Edges represent long overlaps between reads.

Challenge: Pairwise comparison (overlap detection) of millions of reads

Locality sensitive hashing may reduce number of pairs to compare

De Bruijn graphs (DBGs)

DBG is a representation of the k-mer set of the reads.

Nodes are (k − 1)-mers.

Edges are k-mers, connecting nodes with exact suffix-prefix overlap.
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Overlap-Layout-Consensus Assembly
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Overlap Graphs

nodes V : reads
edges E : overlap between reads
edge weights: length of overlap
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Layout: Assembly as Hamiltonian Path Problem

Hamiltonian path

a path that visits each node exactly once

Reconstruct DNA by ordering nodes as a maximum weight Hamiltonian path
(similar to traveling salesperson problem or TSP):
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Consensus

From ordered reads, form consensus sequence.

read consensus sequence 
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Disadvantage of OLC Approach: Complexity

NP-hardness

The Hamiltonian path (traveling salesman) optimization problem is NP-hard.
Unless P=NP, no polynomial algorithm (in |V | = n: number of nodes) exists
that guarantees to find an optimal solution.

Number of possible paths: up to (|V | − 1)!/2.

Heuristic algorithms generate solutions for large instances of reasonable quality

number of reads 6 10 20 50

possible paths 360 181440 6.082× 1016 3.041× 1062
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Effects of Repeats on OLC Approach

DNA
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Repeats increase amount of overlaps (i.e., high-weight edges)

increased complexity of layout

increased number of high-weight solutions

many almost equivalent solutions
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De Bruijn Graph Assembly

Algorithmic Bioinformatics 14



De Bruijn Graphs

Imagine two haplotype sequences with a difference:
TAGTCGAGGCTTTAGAGACAG
TAGTCGAGTCCGATAGAGACAG

Reads generated from the sequences

AGTCGAG CTTTAGA CGATGAG CTTTAGA GTCGAGG
TTAGATC ATGAGGC GAGACAG GAGGCTC GTCCGAT
AGGCTTT GAGACAG AGTCGAG TAGATCC ATGAGGC
TAGAGAA TAGTCGA CTTTAGA CCGATGA TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA TAGTCGA
GCTTTAG TCCGATG GCTTTAG TCGATTG GATCCGA
GAGGCTT AGAGACA TAGTCGA TTAGATC GATGAGG
TTTAGAG GTCGAGG TCTAGAT ATGAGGC TAGAGAC
AGGCTTT GTCCGAT AGGCTTT GAGACAG AGTCGAG
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Definition: de Bruijn Graph

For a set of reads (strings) R ⊆ Σ∗ = {A,C,G,T}∗ and a given parameter k ,
let Tk ⊆ Σk be the set of k-mers present in R as substrings.
The directed de Bruijn graph G = (V ,E ) is defined by

nodes: V = Tk−1,

edges: E = Tk ,
(u → v) ∈ E iff u[1 :] = v [: k − 2] (overlap by k − 2 characters)

Example with k = 5:
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Collapsing the de Bruijn Graph

Linear chains of nodes hold redundant information.
For each edge u → v where node u has outdegree 1 and node v has indegree 1,
we can create a new combined node z and transfer the sequences of u and v to z .
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Collapsing the de Bruijn graph

Example: Two reads with a variation

TAGTCGAGGCTTTAGAGACAG
TAGTCGAGTCCGATAGAGACAG

Simplified graph:
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Collapsing the de Bruijn graph

Which of these nodes can be merged?
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Graph Traversals

In which order are the nodes visited?
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Collapsing Linear Stretches

collapse

Input: Graph G = (V ,E )
Output: Graph G′ = (V′,E′) with collapsed nodes

1 Identify the set of nodes Starts with:

indegree(n) = 0 or indegree(n) > 1

or
(
indegree(n) = 1 and outdegree(prev(n)) > 1

)
2 For each node n in Starts:

while outdegree(n) = 1 and indegree(next(n)) = 1

n← merge
(
n, next(n)

)
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Simple Node-Based Assembly

NodeBasedAssembly

Input: reads R, parameter k
Output: set of assembled sequences (unitigs)

1 G ← DBG(R, k) (De Bruijn graph)

2 G ′ = (V ′,E ′)← collapse(G )

3 Return the set of sequences of nodes in V ′ (called unitigs)

Example

S = {TAGTCGAG, GAGTCCGATAG, GAGGCTTTAG, TAGAGACAG}
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Sequencing Errors in the de Bruijn Graph

Graph with sequencing errors

Errors create two types of topologies in the graph:

tips (CAGT node)

bubbles (between GCTCTAG and GCTTTAG nodes)
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Error Removal in Collapsed de Bruijn Graphs

Definition: Coverage

For a node v ∈ V , let cov(v), be the number of times the (k − 1)-mer v appears in R.
If v is a simplified node, then cov(v) is the average count of all (k − 1)-mers in v .

Coverage cutoff c

A node v ∈ V is removed from the graph if cov(v) < c

The rationale is that nodes with such a low coverage are likely errors,
and as such can be removed to simplify the graph.
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Error Removal in Collapsed de Bruijn Graphs

Tip clipping

A node v ∈ V is a tip if indegree(v) = 0 or outdegree(v) = 0 and
length(v) < 2(k − 1).
The tip with smallest coverage is removed first.
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Error Removal in Collapsed de Bruijn Graphs

Bubble removal

Consider bubbles in increasing order of coverage.
Align the sequences in the nodes of a bubble against each other.
If the sequences are similar, collapse bubble.

Algorithmic Bioinformatics 26



Simple Node-Based Assembly with Error Removal

NodeBasedAssembly

Input: reads R, parameter k , coverage cutoff c
Output: set of assembled sequences (contigs)

1 G ← DBG build from R with parameter k

2 G = (V ,E )← collapse(G )

3 G = (V ,E )← remove tips(G )

4 G = (V ,E )← remove bubbles(G )

5 G = (V ,E )← remove low coverage nodes(G , c)

6 Return the set of sequences of nodes in V

Next Steps: Connect contigs

Expand short simple repeats

Build scaffolds with paired-end information
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Removing Simple Repeats from de Bruijn Graphs

Reminder: Repeats are a fundamental problem for assembly.
Partial solution: Follow original reads along edges, split repetitive nodes (X-cut):

Pevzner et al. PNAS 2001

Algorithmic Bioinformatics 28



Scaffolding with Paired-End Reads

Contig 1 Contig 2
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Technical Complication: Read Orientation

Sequencing removes orientation of reads (DNA strand):

antisense strand →TGGACTGAG→
sense strand ←ACCTGACTC←

Need to include reverse complement of each k-mer in a read

Odd k-mers cannot make palindromes:

TATA TATAT

ATAT ATATA

k = 4 k = 5

Implementations often store k-mer and its reverse complement as one:
→ select one canonical k-mer, i.e. the lexicographically smaller one
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Representation of de Bruijn Graphs

Explicit data structures

represent node as an object

Node

array of Pointers next nodes

string sequence

array of Pointers previous nodes

Each node takes 16 + 16 bytes + 2 · (k − 1) bits (binary DNA encoding)
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Representation of de Bruijn Graphs

Implicit Data Structures

A DBG is in fact just a k-mer set (edge set).
Nodes ((k − 1)-mers) are implicitly defined by k-mer prefixes and suffixes.

Any data structure that answers set membership queries can be used.

Example for k = 3, possible nieghbors of ACG:

AAC CGA
CAC ACG CGC
GAC CGG
TAC CGT

Edge traversal with implicit de Bruijn graphs

Idea: To find all neighbors of a node, just query all neighboring k-mers for existence.

Algorithmic Bioinformatics 31



Representation of de Bruijn Graphs

Implicit Data Structures

A DBG is in fact just a k-mer set (edge set).
Nodes ((k − 1)-mers) are implicitly defined by k-mer prefixes and suffixes.

Any data structure that answers set membership queries can be used.

Example for k = 3, possible nieghbors of ACG:

AAC CGA
CAC ACG CGC
GAC CGG
TAC CGT

Edge traversal with implicit de Bruijn graphs

Idea: To find all neighbors of a node, just query all neighboring k-mers for existence.

Algorithmic Bioinformatics 31



Exact and Probabilistic
Set Membership Data Structures
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Bit Arrays

Complete bit array

Store a bit array of size |Σ|k

Example: k = 4

AAAA 0
AAAC 1

....
TTTG 1
TTTT 0

Σk 410 418 421

size in million bits 1.05 68719 4398047

Too large for k ≥ 19
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Hash Tables

Simple hash table

Use a hash function f to project k-mers to an array much smaller than |Σ|k
that records (key, value) pairs.

The value can be used to store cov(n)

Need to handle collisions

Still potentially wasting memory if initial guess on size was bad

Slow access times if many collisions
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Bloom Filters

Bloom filter

Use h hash functions f1, ..., fh to project k-mers to a bit array B with m bits,
where m� |Σ|k

initially Bi = 0, ∀i ∈ {0, ..m − 1}
add a k-mer by setting all positions of the h hash function to 1

after initialization

seq f1 f2 f3
AAAA 0 3 6
AAAC 4 1 2

....
TTTG 0 3 6
TTTT 0 1 4

index B

0 0
1 0
2 0
3 0
4 0
5 0
6 0
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Querying a Bloom Filter

Query a k-mer by testing if bits at all h addresses are 1

If all bits are set, the k-mer may be present.

There can be false positives.
Rate of false positives depends on load and h.

If there is at least one bit that is not set, then k-mer is definitely not present.
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Effect of False Positives in Bloom Filters

Circle of 1000 random 31-mers, FPRs of 1%, 5%, 10%, 15%

Pell et al., PNAS, 2012
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Exact Bloom Filters for de Bruijn Graphs

Idea

Critical false positives are direct neighbors of true positives.

Only the critical FPs are problematic in a graph traversal.

Store all critical false positives in an extra data structure (e.g. simple set).

Chikhi and Rizk, WABI, 2012

circles: true nodes

squares: critical FPs

dashed circles: other FPs



Assembly evaluation
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Metrics for Evaluation of Assembly Quality

Number of contigs: The total number of contigs in the assembly.

Largest contig: The length of the largest contig in the assembly.

Total length: The total number of bases in the assembly.

NG50, Genome N50: The contig length such that using equal or longer length
contigs produces 50% of the length of the reference genome, rather than 50% of
the assembly length.

Software Quast can be used to compute these metrics for an assembly
(http://quast.sourceforge.net/quast) Gurevich et al. Bioinformatics 2013
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Most Common Metric: N50

Definition

The largest contig length L, such that contigs of length ≥ L
account for at least 50% of the bases of the assembly.

Example:

1 Mbp assembly
Contigs: 250k, 125k, 50k, 30k, 25k, 22k, 14k, 10k, . . . .
N50 size = 22kbp
(250k + 125k + 50k + 30k + 25k + 22k > 500 kbp)

Important

Comparison using N50 values assumes that the base genome has the same size.
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Human Genome Assembly Performance/Cost in 2020

Logsdon, Vollger, and Eichler, Nature Reviews Genetics, June 2020



Sequence error correction before assembly
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Correction of Sequencing Errors

Why?

Reads accumulate errors
(esp. at the 3’ end; see figure).

Errors create tips and bubbles
in the graph.

Removing errors
before DBG construction
can save time and avoid “tangle”.

How?

Rare k-mers are proabbly not in
from the genome, but errors.
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Erroneous k-mers Occur at Low Frequency

Density:
normalized frequency of
k-mers with certain coverage

Source:
Kelley, Schatz, and Salzberg:
Genome Biology, 2010.
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Error Correction from k-mer Spectrum (Spectral Alignment)

SpectralAlignment

Input: reads R, parameter k , cutoff c
Output: corrected set of reads

1 Build hashtable H from R storing (k-mer, count) pairs

2 For each read r from R:
1 For each index i :

1 v ← r [i .. i + k]
2 if H[v ] < c:

r [i .. i + k]← BestHammingNeighbor(v , c,H)

BestHammingNeighbor(v , c ,H)

Return the Hamming-distance-1 neighbor of v with highest count above c .
(Found by evaluating all neighbors.)
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Conclusion
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Summary on Assembly Paradigms

Overlap-layout consensus paradigm (Hamilton path):

Nodes are reads.

Overlap between reads is represented as an overlap graph.

Computing a maximum weight Hamilton path in the overlap graph produces a
genome assembly (NP hard).

Takes advantage of long reads.

de Bruijn graph paradigm (k-mers)

Nodes are (k − 1)-mers of reads.

Edges are k-mers of reads.

De Bruijn graph models exact overlap of k-mers in reads.

Based on fast (probabilistic?) set membership data structures.

Algorithmic Bioinformatics 48



Summary on Assembly Paradigms

Overlap-layout consensus paradigm (Hamilton path):

Nodes are reads.

Overlap between reads is represented as an overlap graph.

Computing a maximum weight Hamilton path in the overlap graph produces a
genome assembly (NP hard).

Takes advantage of long reads.

de Bruijn graph paradigm (k-mers)

Nodes are (k − 1)-mers of reads.

Edges are k-mers of reads.

De Bruijn graph models exact overlap of k-mers in reads.

Based on fast (probabilistic?) set membership data structures.

Algorithmic Bioinformatics 48



Summary

Genome assembly paradigms: OLC, DBG

Overlap graph

construction (pairwise overlaps)
Hamiltonian path problem (NP-hard)

de Bruijn graph

definition
simplification
traversal
error correction

Representations for de Bruijn graphs (k-mer sets)

bit array (huge)
hash table
Bloom filters (exact, inexact)
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Possible exam questions

What are the main approaches to genome assembly?

Define the overlap graph.

What is the problem when computing the overlap graph? How can it be reduced?

What is a (maximum weight) Hamilton path? How can it be computed?

Why is a Hamilton path in the overlap graph a layout for genome assembly?

Define the de Bruijn graph for genome assembly.

Construct a de Bruijn graph for a given example.

What is the effect of sequencing errors on a DBG? Explain strategies to remove them.

Mention different representations for de Bruijn graphs.

Which representation of a DBG is the most space-efficient?

What is a Bloom filter? Why can it give false positive answers to queries?

What is a critical false positive?
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