
Min-Hashing and Applications
Algorithms for Sequence Analysis

Sven Rahmann
partially based on slides by Ali Ghaffaari

Summer 2021

Overview

Previous lecture

Hashing, collisions

(h, b) Cuckoo hashing

Locality sensitive hashing

Min-hashing: Locality sensitive for Jaccard similarity of k-mer sets

Today’s lecture

Details on min-hashing of DNA k-mers

Applications

Algorithmic Bioinformatics 2

LSH for Jaccard Similarity

SJ =
|A ∩ B|
|A ∪ B|

SJ(A,B) = 3
12 = 0.25

Claim: Min-Hashing is LS for Jaccard Similarity

A bijective function π : U → [0, |U|[is a ranking (ordering) function of U .
The family H of hash functions

hπ(A) := min
x∈A

π(x) ,

where π ranges over all orderings of U , is locality sensitive for SJ .

Algorithmic Bioinformatics 3

LSH for Jaccard Similarity

SJ =
|A ∩ B|
|A ∪ B|

SJ(A,B) = 3
12 = 0.25

Claim: Min-Hashing is LS for Jaccard Similarity

A bijective function π : U → [0, |U|[is a ranking (ordering) function of U .
The family H of hash functions

hπ(A) := min
x∈A

π(x) ,

where π ranges over all orderings of U , is locality sensitive for SJ .

Algorithmic Bioinformatics 3

Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:

SJ(A,B) = |A∩B|
|A∪B|

hπ(A) := minx∈A π(x)

Let a := hπ(A) and b := hπ(B).

So what is P[a = b] ?

a = b iff minimum over elements in A ∪ B is in A ∩ B.

|A ∩ B| successes out of |A ∪ B| possible events

Thus, P[a = b] = |A ∩ B|/|A ∪ B| = SJ(A,B).

Assumptions (min-hashing still useful if weakened)

Elements of A,B (k-mers) are bijectively encoded, not hashed.

Truly random permutations are used.

Algorithmic Bioinformatics 4

Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:

SJ(A,B) = |A∩B|
|A∪B|

hπ(A) := minx∈A π(x)

Let a := hπ(A) and b := hπ(B).

So what is P[a = b] ?

a = b iff minimum over elements in A ∪ B is in A ∩ B.

|A ∩ B| successes out of |A ∪ B| possible events

Thus, P[a = b] = |A ∩ B|/|A ∪ B| = SJ(A,B).

Assumptions (min-hashing still useful if weakened)

Elements of A,B (k-mers) are bijectively encoded, not hashed.

Truly random permutations are used.

Algorithmic Bioinformatics 4

Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:

SJ(A,B) = |A∩B|
|A∪B|

hπ(A) := minx∈A π(x)

Let a := hπ(A) and b := hπ(B).

So what is P[a = b] ?

a = b iff minimum over elements in A ∪ B is in A ∩ B.

|A ∩ B| successes out of |A ∪ B| possible events

Thus, P[a = b] = |A ∩ B|/|A ∪ B| = SJ(A,B).

Assumptions (min-hashing still useful if weakened)

Elements of A,B (k-mers) are bijectively encoded, not hashed.

Truly random permutations are used.

Algorithmic Bioinformatics 4

Sketches: Min-Hashing

Definition: Min-hashing Sketch

A sketch or signature for the Jaccard similarity of the form

hi (A) := min
x∈A

πi (x), i = 1, . . . , r ,

where each πi is an independent random permutation of U , is a min-hashing sketch.

Weaker versions in practice

1 Elements of A,B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2 Permutations are chosen from a limited set, not perfectly random,
e.g. π(x) = (a · (x ⊕ b)) mod 4k with odd a, some b.

3 Computing r hash values is expensive; can one suffice?

Take r smallest values of one h instead of minima from r functions.
Partition universe into r subsets, take minimum in each subset separately.

Algorithmic Bioinformatics 5

Sketches: Min-Hashing

Definition: Min-hashing Sketch

A sketch or signature for the Jaccard similarity of the form

hi (A) := min
x∈A

πi (x), i = 1, . . . , r ,

where each πi is an independent random permutation of U , is a min-hashing sketch.

Weaker versions in practice

1 Elements of A,B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2 Permutations are chosen from a limited set, not perfectly random,
e.g. π(x) = (a · (x ⊕ b)) mod 4k with odd a, some b.

3 Computing r hash values is expensive; can one suffice?

Take r smallest values of one h instead of minima from r functions.
Partition universe into r subsets, take minimum in each subset separately.

Algorithmic Bioinformatics 5

Sketches: Min-Hashing

Definition: Min-hashing Sketch

A sketch or signature for the Jaccard similarity of the form

hi (A) := min
x∈A

πi (x), i = 1, . . . , r ,

where each πi is an independent random permutation of U , is a min-hashing sketch.

Weaker versions in practice

1 Elements of A,B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2 Permutations are chosen from a limited set, not perfectly random,
e.g. π(x) = (a · (x ⊕ b)) mod 4k with odd a, some b.

3 Computing r hash values is expensive; can one suffice?

Take r smallest values of one h instead of minima from r functions.
Partition universe into r subsets, take minimum in each subset separately.

Algorithmic Bioinformatics 5

Sketches: Min-Hashing

Definition: Min-hashing Sketch

A sketch or signature for the Jaccard similarity of the form

hi (A) := min
x∈A

πi (x), i = 1, . . . , r ,

where each πi is an independent random permutation of U , is a min-hashing sketch.

Weaker versions in practice

1 Elements of A,B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2 Permutations are chosen from a limited set, not perfectly random,
e.g. π(x) = (a · (x ⊕ b)) mod 4k with odd a, some b.

3 Computing r hash values is expensive; can one suffice?

Take r smallest values of one h instead of minima from r functions.
Partition universe into r subsets, take minimum in each subset separately.

Algorithmic Bioinformatics 5

Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = {T1,T2, ...,TN} and a query sequence Q,
find all texts in T that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.

Algorithmic Bioinformatics 6

Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = {T1,T2, ...,TN} and a query sequence Q,
find all texts in T that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.

Algorithmic Bioinformatics 6

Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = {T1,T2, ...,TN} and a query sequence Q,
find all texts in T that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.

Many methods catalogue all k-mers in the database: k-mer index.

Goal: Use only a subset of k-mers: k-mer sampling.

Algorithmic Bioinformatics 6

K -mer Sampling: How NOT to do it

Bad idea: Only consider every w -th k-mer in a string

If |j − i | is not a multiple of w , then substrings at i and j do not share any k-mers:

Algorithmic Bioinformatics 7

K -mer Sampling with Minimizers

A minimizer scheme is a much better approach to sample k-mers.

Fix an ordering (permutation) of all k-mers: π.

Consider a window of w consecutive k-mers.

Choose the/a k-mer x∗ such that π(x∗) is minimum among all π(x) in the
window.

Such an x∗ is called a (w , k)-minimizer.

Sliding the w -window over the text, we collect all such minimizers.

Example:

Algorithmic Bioinformatics 8

Properties of Minimizers

If two strings have a sufficiently long exact match (length w + k − 1),
then they are guaranteed to share a (w , k) minimizer

Even without an exact match of length w + k − 1,
similar strings (Jaccard similarity of k-mer sets)
share a minimizer with high probability.

Only a small fraction of all k-mers need to be stored:
For a random string this fraction is about 2/(w + 1) on average,
i.e., minimizers do not change frequently.

Larger w : Smaller sample, but requires higher similarity for guarantees.
Also slightly higher probability of “random hits”.

Algorithmic Bioinformatics 9

Practical Considerations

Long vs. short k-mers on DNA

k ≤ 32: Encode bijectively

k > 32: Hash k-mers to 64-bit integers (additional collisions possible)

Random permutations?

For 4k objects, there are (4k)! possible orderings (permutations).
For k = 3: 64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000

Impossible to pick one truly randomly with a pseudo-random number generator:
Restrict to much smaller sets in practice,

Two-parameter version: πa,b(x) = (a · (x ⊕ b)) mod 4k with odd a, any b.
Randomly choose b and odd a only.

Algorithmic Bioinformatics 10

Practical Considerations

Long vs. short k-mers on DNA

k ≤ 32: Encode bijectively

k > 32: Hash k-mers to 64-bit integers (additional collisions possible)

Random permutations?

For 4k objects, there are (4k)! possible orderings (permutations).
For k = 3: 64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000

Impossible to pick one truly randomly with a pseudo-random number generator:
Restrict to much smaller sets in practice,

Two-parameter version: πa,b(x) = (a · (x ⊕ b)) mod 4k with odd a, any b.
Randomly choose b and odd a only.

Algorithmic Bioinformatics 10

Practical Considerations

Canonical k-mers vs. both strands

DNA sequence is equivalent to its reverse complement: AAAG = CTTT.

Store or sample both strands (twice the size) ?

Alternative: Use canonical k-mers (encodings, hash values):
Among x and its reverse complement x̄ , pick the smaller (or larger) one.

When using min-hashing, it may be better to use max{x , x̄}.

Gapped k-mers

If error rates or evolutionary distances are moderately high,
a few equidistant differences may destroy all common k-mers.

Can use gaped k-mers (masks like #.##....##.#) instead.

Can use different masks together with different permutations in sketches.

Possibilities are endless... Interesting research topics!

Algorithmic Bioinformatics 11

Practical Considerations

Canonical k-mers vs. both strands

DNA sequence is equivalent to its reverse complement: AAAG = CTTT.

Store or sample both strands (twice the size) ?

Alternative: Use canonical k-mers (encodings, hash values):
Among x and its reverse complement x̄ , pick the smaller (or larger) one.

When using min-hashing, it may be better to use max{x , x̄}.

Gapped k-mers

If error rates or evolutionary distances are moderately high,
a few equidistant differences may destroy all common k-mers.

Can use gaped k-mers (masks like #.##....##.#) instead.

Can use different masks together with different permutations in sketches.

Possibilities are endless... Interesting research topics!

Algorithmic Bioinformatics 11

Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

map noisy long reads to genomes or assemblies
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/lh3/minimap2

Sourmash v4 (Similarity Estimation)

computes hash sketches from DNA sequences, compares them, estimates
sequence similarity between large datasets quickly and accurately.
Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

Finds species of origin for each read, estimates species abundance.
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

Split reads of xenograft samples into several categories
Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.

Algorithmic Bioinformatics 12

https://github.com/lh3/minimap2

Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

map noisy long reads to genomes or assemblies
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/lh3/minimap2

Sourmash v4 (Similarity Estimation)

computes hash sketches from DNA sequences, compares them, estimates
sequence similarity between large datasets quickly and accurately.
Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

Finds species of origin for each read, estimates species abundance.
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

Split reads of xenograft samples into several categories
Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.

Algorithmic Bioinformatics 12

https://github.com/lh3/minimap2

Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

map noisy long reads to genomes or assemblies
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/lh3/minimap2

Sourmash v4 (Similarity Estimation)

computes hash sketches from DNA sequences, compares them, estimates
sequence similarity between large datasets quickly and accurately.
Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

Finds species of origin for each read, estimates species abundance.
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

Split reads of xenograft samples into several categories
Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.

Algorithmic Bioinformatics 12

https://github.com/lh3/minimap2

Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

map noisy long reads to genomes or assemblies
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/lh3/minimap2

Sourmash v4 (Similarity Estimation)

computes hash sketches from DNA sequences, compares them, estimates
sequence similarity between large datasets quickly and accurately.
Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

Finds species of origin for each read, estimates species abundance.
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

Split reads of xenograft samples into several categories
Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.

Algorithmic Bioinformatics 12

https://github.com/lh3/minimap2

Summary

Locality sensitive hashing for Jaccard similarity: Min-hashing

Sketches and alternative implementations using a single hash function

Sampling DNA sequences by using k-mer minimizers:
1. reduction of size
2. built-in error tolerance

Technical details to consider

Alignment-free methods based on k-mers

Applications

Algorithmic Bioinformatics 13

Possible Exam Questions

Prove that min-hashing is LS for Jaccard similarity

What is a sketch?

Why are sketches useful for similarity search in high-dimensional spaces?

What are minimizers (precisely, (w , k)-minimizers) of a sequence?

What property does the set of minimizers of a sequence have?

What is the effect of changing the window size w?

What is the effect of changing the k-mer size k?

Name some application areas of (w , k)-minimizers in bioinformatics.

Algorithmic Bioinformatics 14

