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Overview

Previous lecture

Hashing, collisions

(h, b) Cuckoo hashing

Locality sensitive hashing

Min-hashing: Locality sensitive for Jaccard similarity of k-mer sets

Today’s lecture

Details on min-hashing of DNA k-mers

Applications
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LSH for Jaccard Similarity

SJ =
|A ∩ B|
|A ∪ B|

SJ(A,B) = 3
12 = 0.25

Claim: Min-Hashing is LS for Jaccard Similarity

A bijective function π : U → [0, |U|[ is a ranking (ordering) function of U .
The family H of hash functions

hπ(A) := min
x∈A

π(x) ,

where π ranges over all orderings of U , is locality sensitive for SJ .
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Proof: Min-Hashing is LS for Jaccard Similarity

Definitions:

SJ(A,B) = |A∩B|
|A∪B|

hπ(A) := minx∈A π(x)

Let a := hπ(A) and b := hπ(B).

So what is P[a = b] ?

a = b iff minimum over elements in A ∪ B is in A ∩ B.

|A ∩ B| successes out of |A ∪ B| possible events

Thus, P[a = b] = |A ∩ B|/|A ∪ B| = SJ(A,B).

Assumptions (min-hashing still useful if weakened)

Elements of A,B (k-mers) are bijectively encoded, not hashed.

Truly random permutations are used.
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Sketches: Min-Hashing

Definition: Min-hashing Sketch

A sketch or signature for the Jaccard similarity of the form

hi (A) := min
x∈A

πi (x), i = 1, . . . , r ,

where each πi is an independent random permutation of U , is a min-hashing sketch.

Weaker versions in practice

1 Elements of A,B are not integer-encoded, but hashed:
Additional collisions, higher apparent similarity

2 Permutations are chosen from a limited set, not perfectly random,
e.g. π(x) = (a · (x ⊕ b)) mod 4k with odd a, some b.

3 Computing r hash values is expensive; can one suffice?

Take r smallest values of one h instead of minima from r functions.
Partition universe into r subsets, take minimum in each subset separately.
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Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = {T1,T2, ...,TN} and a query sequence Q,
find all texts in T that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.
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Querying String Sets by Similarity

Sequence Similarity Search

Given a set of texts T = {T1,T2, ...,TN} and a query sequence Q,
find all texts in T that are (locally) similar to Q (above a threshold).

Most sequence similarity search algorithms use seed-and-extend approach.

Many methods catalogue all k-mers in the database: k-mer index.

Goal: Use only a subset of k-mers: k-mer sampling.
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K -mer Sampling: How NOT to do it

Bad idea: Only consider every w -th k-mer in a string

If |j − i | is not a multiple of w , then substrings at i and j do not share any k-mers:
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K -mer Sampling with Minimizers

A minimizer scheme is a much better approach to sample k-mers.

Fix an ordering (permutation) of all k-mers: π.

Consider a window of w consecutive k-mers.

Choose the/a k-mer x∗ such that π(x∗) is minimum among all π(x) in the
window.

Such an x∗ is called a (w , k)-minimizer.

Sliding the w -window over the text, we collect all such minimizers.

Example:
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Properties of Minimizers

If two strings have a sufficiently long exact match (length w + k − 1),
then they are guaranteed to share a (w , k) minimizer

Even without an exact match of length w + k − 1,
similar strings (Jaccard similarity of k-mer sets)
share a minimizer with high probability.

Only a small fraction of all k-mers need to be stored:
For a random string this fraction is about 2/(w + 1) on average,
i.e., minimizers do not change frequently.

Larger w : Smaller sample, but requires higher similarity for guarantees.
Also slightly higher probability of “random hits”.
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Practical Considerations

Long vs. short k-mers on DNA

k ≤ 32: Encode bijectively

k > 32: Hash k-mers to 64-bit integers (additional collisions possible)

Random permutations?

For 4k objects, there are (4k)! possible orderings (permutations).
For k = 3: 64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000

Impossible to pick one truly randomly with a pseudo-random number generator:
Restrict to much smaller sets in practice,

Two-parameter version: πa,b(x) = (a · (x ⊕ b)) mod 4k with odd a, any b.
Randomly choose b and odd a only.
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Practical Considerations

Canonical k-mers vs. both strands

DNA sequence is equivalent to its reverse complement: AAAG = CTTT.

Store or sample both strands (twice the size) ?

Alternative: Use canonical k-mers (encodings, hash values):
Among x and its reverse complement x̄ , pick the smaller (or larger) one.

When using min-hashing, it may be better to use max{x , x̄}.

Gapped k-mers

If error rates or evolutionary distances are moderately high,
a few equidistant differences may destroy all common k-mers.

Can use gaped k-mers (masks like #.##....##.#) instead.

Can use different masks together with different permutations in sketches.

Possibilities are endless... Interesting research topics!

Algorithmic Bioinformatics 11



Practical Considerations

Canonical k-mers vs. both strands

DNA sequence is equivalent to its reverse complement: AAAG = CTTT.

Store or sample both strands (twice the size) ?

Alternative: Use canonical k-mers (encodings, hash values):
Among x and its reverse complement x̄ , pick the smaller (or larger) one.

When using min-hashing, it may be better to use max{x , x̄}.

Gapped k-mers

If error rates or evolutionary distances are moderately high,
a few equidistant differences may destroy all common k-mers.

Can use gaped k-mers (masks like #.##....##.#) instead.

Can use different masks together with different permutations in sketches.

Possibilities are endless... Interesting research topics!

Algorithmic Bioinformatics 11



Applications

Minimap2 (Read mapping using seed-and-extend with minimizers)

map noisy long reads to genomes or assemblies
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. https://github.com/lh3/minimap2

Sourmash v4 (Similarity Estimation)

computes hash sketches from DNA sequences, compares them, estimates
sequence similarity between large datasets quickly and accurately.
Brown and Irber (2016). sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software, 1(5), 27

Kraken2 (Metagenomics)

Finds species of origin for each read, estimates species abundance.
Wood, D.E., Lu, J. & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257.

Xengsort (Xenograft sorting, cancer research)

Split reads of xenograft samples into several categories
Zentgraf % Rahmann (2021). Fast lightweight xenograft sorting. Algorithms for Molecular Biology 16:2.
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Summary

Locality sensitive hashing for Jaccard similarity: Min-hashing

Sketches and alternative implementations using a single hash function

Sampling DNA sequences by using k-mer minimizers:
1. reduction of size
2. built-in error tolerance

Technical details to consider

Alignment-free methods based on k-mers

Applications
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Possible Exam Questions

Prove that min-hashing is LS for Jaccard similarity

What is a sketch?

Why are sketches useful for similarity search in high-dimensional spaces?

What are minimizers (precisely, (w , k)-minimizers) of a sequence?

What property does the set of minimizers of a sequence have?

What is the effect of changing the window size w?

What is the effect of changing the k-mer size k?

Name some application areas of (w , k)-minimizers in bioinformatics.
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