
Genome-Wide DNA Read Mapping
(or DNA Database Search)
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previously: Error Tolerant Pattern Matching

Many online algorithms

Index-based: Error-tolerant backward search (FM-index + NFA-like table)

Today’s Lecture: Genome-Wide DNA Sequence Search

Read Mappers: bwa-sw, bwa-mem, bowtie2

Seed-and-extend principle (anchors)

Algorithmic Bioinformatics 2

Overview

Previously: Error Tolerant Pattern Matching

Many online algorithms

Index-based: Error-tolerant backward search (FM-index + NFA-like table)

Today’s Lecture: Genome-Wide DNA Sequence Search

Read Mappers: bwa-sw, bwa-mem, bowtie2

Seed-and-extend principle (anchors)

Algorithmic Bioinformatics 2

Read Mapping and DNA Database Search Problems

Read Mapping

Find (possible) origin(s) of (short) piece of DNA (“read”) within genome;
Find (possible) origin(s) of parts of (long) piece of DNA within genome.

DNA Database Search

Find (parts of) DNA query in huge DNA database (NCBI GenBank)

Algorithmic Bioinformatics 3

Reminder: Error Tolerant Backward Search
T = AAAACGTACCT$, P = ACTGT, Σ = {A, C, G, T}:

[0, 11] [10, 11] [9, 9]

[1, 5]

[6, 8]

[9, 9]

[10, 11]

[0, 11]

[1, 5]

[6, 8]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[9, 9]

[7, 7] [5, 5]

k = 0

k ≤ 1

Σ Σ Σ Σ Σ

T G T C A

T G T C A

ε ε ε ε ε
Σ Σ Σ Σ Σ

Green edges: insertions

Red edges (ε): deletions

Black edges: matches (horizontal) and mismatches (diagonal)

Note: numbers for illustration only, not necessarily correct.

Algorithmic Bioinformatics 4

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.) F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

Algorithmic Bioinformatics 5

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.) F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

Algorithmic Bioinformatics 5

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.) F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

1

0

0

a

c

t

ct
Algorithmic Bioinformatics 5

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.) F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

1

0

0

a

c

t

t

t

ct
Algorithmic Bioinformatics 5

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

a

 F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

1

0

0

a

c

t

c

t

t

ct

t

1

c
Algorithmic Bioinformatics 5

Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)

a

 F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

1

0

0

a

c

t

c

t

t

ct

t

1

c

1

0

t

a

c

Algorithmic Bioinformatics 5

Running time of Approximate Backward Search

(with NFA states or by branching on-the-fly)

Worst case

All strings in edit/Hamming neighborhood are enumerated, i.e. the set{
P ′ ∈ Σ∗

∣∣ d(P,P ′) ≤ k
}
,

where P ∈ Σm is the pattern and k a distance threshold.

⇒ Running time is exponential in k in the worst case.

In practice, it might be less bad, depending on the string that is searched.

Algorithmic Bioinformatics 6

Getting the Actual Positions of Matches

a

 F L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c

cta

1

1

0

0

a

c

t

c

t

t

ct

t

1

c

1

0

t

a

c

Question

Given: interval on BWT
Sought: position of matches in
original string

Answer

Use (sparse) suffix array pos

Algorithmic Bioinformatics 7

Alternative: Branch on Suffix Tree (Forward Search)

Examples (Hamming distance 1 for simplicity): (1) acc, (2) bab

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a

Algorithmic Bioinformatics 8

Approaches in Practice

Suffix tree (forward search) not used: memory footprint too large

NFA states not used (memory overhead)

bwa-sw: approximate backward search with branching on-the-fly,
intervals examined using depth-first search.

bwa-sw starts at several locations in the read (local matches),
allows for smaller edit distance thresholds

bwa-sw collects a large number of intervals first,
then performs batch lookup in suffix array

Literature: bwa-sw

Heng Li & Richard Durbin:
Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics 25(14):1754–1760 (2009).

Algorithmic Bioinformatics 9

Approaches in Practice

Suffix tree (forward search) not used: memory footprint too large

NFA states not used (memory overhead)

bwa-sw: approximate backward search with branching on-the-fly,
intervals examined using depth-first search.

bwa-sw starts at several locations in the read (local matches),
allows for smaller edit distance thresholds

bwa-sw collects a large number of intervals first,
then performs batch lookup in suffix array

Literature: bwa-sw

Heng Li & Richard Durbin:
Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics 25(14):1754–1760 (2009).

Algorithmic Bioinformatics 9

Seed and Extend Idea for
Filter-based Approaches

Algorithmic Bioinformatics 10

Motivation

Branching on errors is computationally expensive

Running time exponential in the number of errors

Exact matches are inexpensive to compute

Idea: Find exact matches

of fixed length q (q-grams) or k (k-mers)
of maximal length (MEMs, maximal exact matches) using FM-index

Then perform anchored local alignment around the match (seed).

Literature: bwa-mem

Heng Li:
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
arXiv:1303.3997 [q-bio.GN]

Algorithmic Bioinformatics 11

Motivation

Branching on errors is computationally expensive

Running time exponential in the number of errors

Exact matches are inexpensive to compute

Idea: Find exact matches

of fixed length q (q-grams) or k (k-mers)
of maximal length (MEMs, maximal exact matches) using FM-index

Then perform anchored local alignment around the match (seed).

Literature: bwa-mem

Heng Li:
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
arXiv:1303.3997 [q-bio.GN]

Algorithmic Bioinformatics 11

Pigeon Hole Principle, Seed and Extend

Example

When we allow a read to contain up to 1 error, the following scenarios are possible:

No error Error left Error right

More than one error?

Pigeon hole principle holds for d ≥ 1 errors:

Cut pattern into d + 1 parts

Then, at least one part without error has to exist.

Seed and Extend

Seed: Find origins of exact match

Extend: Continue search allowing errors around exact match

Algorithmic Bioinformatics 12

Pigeon Hole Principle, Seed and Extend

Example

When we allow a read to contain up to 1 error, the following scenarios are possible:

No error Error left Error right

More than one error?

Pigeon hole principle holds for d ≥ 1 errors:

Cut pattern into d + 1 parts

Then, at least one part without error has to exist.

Seed and Extend

Seed: Find origins of exact match

Extend: Continue search allowing errors around exact match

Algorithmic Bioinformatics 12

Pigeon Hole Principle, Seed and Extend

Example

When we allow a read to contain up to 1 error, the following scenarios are possible:

No error Error left Error right

More than one error?

Pigeon hole principle holds for d ≥ 1 errors:

Cut pattern into d + 1 parts

Then, at least one part without error has to exist.

Seed and Extend

Seed: Find origins of exact match

Extend: Continue search allowing errors around exact match
Algorithmic Bioinformatics 12

Approximate Pattern Matching

R D R I

l

d

P

Seed-and-extend strategy

Algorithmic Bioinformatics 13

Approximate Pattern Matching

R D R I

l

d

⌊l / (d + 1)⌋

P

Seed-and-extend strategy

Algorithmic Bioinformatics 13

Approximate Pattern Matching

R D R I

k

d

⌊l / (d + 1)⌋

P

k =

kk k k

Seed-and-extend strategy

Algorithmic Bioinformatics 13

Approximate Pattern Matching

R D R I

k

d

⌊l / (d + 1)⌋

P

k =

kk k k

Seed-and-extend strategy

Algorithmic Bioinformatics 13

Bowtie

Implementation of seed-extend in bowtie

Use two indexes: for searching forward/backward, respectively

Seed: search for left/right half without errors using FM index

Extend: continue search using branching in FM index

Variants used in other read mappers or search tools

seed phase using index, extend phase using alignment

multiple seeds, then alignment

Algorithmic Bioinformatics 14

Bowtie

Implementation of seed-extend in bowtie

Use two indexes: for searching forward/backward, respectively

Seed: search for left/right half without errors using FM index

Extend: continue search using branching in FM index

Variants used in other read mappers or search tools

seed phase using index, extend phase using alignment

multiple seeds, then alignment

Algorithmic Bioinformatics 14

Abstraction: Filter-based approximate search

[Stefan Burkhardt, Ph.D. Thesis 2002]

Algorithmic Bioinformatics 15

Filter-based Search

A filter restricts the expensive verification to promising regions of the target sequence.

A lossy filter may miss true matches in the target.

A lossless filter contains all true matches.

A good filter always balances sensitivity and speed.

true match true match

Lossy Filter
(contains False
Negatives)

Lossless filter

Algorithmic Bioinformatics 16

Definitions

q-gram

A q-gram of a string s is a substring of length q of s.

Matching Problem

Given a reference text T and a query string s,
the approximate matching problem with d differences and window length w
consists of finding a pair of substrings (s[i . . . i + w − 1], t) such that

1 s[i , i + w − 1] is a length-w substring of s, and t is a substring of T ,

2 dedit(s[i . . . i + w − 1], t) ≤ d , i.e., edit distance is at most d .

Algorithmic Bioinformatics 17

Q-gram lemma

Lemma

Let an occurrence of s[i , i + w − 1] with at most d differences end at position j in T .
Then at least w + 1− (d + 1)q q-grams of s[i , i + w − 1] occur in T [j − w + 1, j].

Proof

each error destroys at most q q-grams (Y positions below)

the last q − 1 positions have no q-grams (X positions below)

intact q-grams: w − dq − (q − 1) = w + 1− (d + 1)q

Example: q=3 (valid positions of 3-grams are M below)

target ATTGACAC

query ATTCACAC

3-grams MYYYMMXX

Algorithmic Bioinformatics 18

Q-gram lemma

Lemma

Let an occurrence of s[i , i + w − 1] with at most d differences end at position j in T .
Then at least w + 1− (d + 1)q q-grams of s[i , i + w − 1] occur in T [j − w + 1, j].

Proof

each error destroys at most q q-grams (Y positions below)

the last q − 1 positions have no q-grams (X positions below)

intact q-grams: w − dq − (q − 1) = w + 1− (d + 1)q

Example: q=3 (valid positions of 3-grams are M below)

target ATTGACAC

query ATTCACAC

3-grams MYYYMMXX

Algorithmic Bioinformatics 18

QUASAR algorithm

Task: Find approximate matches of s in T

Seed-and-extend based on q-gram lemma

1 Pre-compute the threshold α for a window of length w using the q-gram lemma.

2 Partition T into blocks (larger than window length w)

3 Count all q-grams in s[1 . . .w] for each block along T

4 Each block that contains an approximate match has a counter of at least α.
(The reverse is not true. We may have false positive blocks)

5 Advance the window in s from s[i . . . j] to s[i + 1 . . . j + 1]

Algorithmic Bioinformatics 19

QUASAR - counting q-grams

In order to count the q-gram matches in a window, we need an efficient data structure.

In order to count the q-gram matches in a window, we need an efficient data structure.
The q-gram index:

1 Construct the suffix array pos of T

2 Create a table of size |Σ|q that maps a q-gram to its starting rank in pos,
to allow constant time lookup.

3 q-grams are integer-encoded as numbers 0 . . . |Σ|q − 1,
e.g. DNA: TTGCCA = (332110)4 = 3988 (base-4 number)

Algorithmic Bioinformatics 20

QUASAR - Blockwise counting

Keeping a counter for each possible window of length w of the text
would lead to a huge array of size O(|T |)
To save space, we define two arrays of blocks of size b ≥ 2w .
The first block array is shifted by b/2 positions against the second.

true match true match

Algorithmic Bioinformatics 21

QUASAR - Efficient counting and shifting

When the query window s[i . . . j] is moved to s[i + 1 . . . j + 1],
the only difference for the block counters are two q-grams,
one that leaves (blue) and one that enters the window (red).

i j

ACTGTAAGAT

So for each shift update, change the block counters as follows:

subtract the count of the leading q-gram (blue) from blocks,
unless the block counter is ≥ α (lock-in)

add a count to all blocks that contain the trailing q-gram (red)

Algorithmic Bioinformatics 22

QUASAR - Efficient counting and shifting

When the query window s[i . . . j] is moved to s[i + 1 . . . j + 1],
the only difference for the block counters are two q-grams,
one that leaves (blue) and one that enters the window (red).

i j

ACTGTAAGAT

So for each shift update, change the block counters as follows:

subtract the count of the leading q-gram (blue) from blocks,
unless the block counter is ≥ α (lock-in)

add a count to all blocks that contain the trailing q-gram (red)

Algorithmic Bioinformatics 22

Gapped q-Grams

Definition

Gapped q-grams are specified with a mask, a string of

characters denote required matches

. characters denote “don’t care” positions

For example ##.#.# denotes a gapped 4-gram of span (length) 6.

Gapped q-grams can improve the filter efficiency by orders of magnitude.

The q-gram lemma is not tight for gapped q-grams and there is no closed formula
for computing the threshold for a given edit distance d .

Algorithmic Bioinformatics 23

Gapped q-Grams

Definition

Gapped q-grams are specified with a mask, a string of

characters denote required matches

. characters denote “don’t care” positions

For example ##.#.# denotes a gapped 4-gram of span (length) 6.

Gapped q-grams can improve the filter efficiency by orders of magnitude.

The q-gram lemma is not tight for gapped q-grams and there is no closed formula
for computing the threshold for a given edit distance d .

Algorithmic Bioinformatics 23

Gapped Q-Grams: Example

##.# w=11, k=3

[Stefan Burkhardt and Juha Kärkkäinen, Fundamenta Informaticae, 2003]

Algorithmic Bioinformatics 24

SWIFT algorithm: Parallelograms instead of blocks
Slide length-w window over query, count q-grams in diagonals

Algorithmic Bioinformatics 25

SWIFT - Examples

from Kehr, Weese, Reinert, BMC Bioinformatics 2011

Algorithmic Bioinformatics 26

Other Tools

There are a number of read mappers that were made for the analysis of
next-generation sequencing reads against large genomes and use variants of filter
algorithms with q-grams

RMAP

RazerS and RazerS3

Hobbes

GEM

Stellar

and many more

Algorithmic Bioinformatics 27

Literature

Q-gram Based Database Searching Using a Suffix Array (QUASAR).
Burkhardt et al., RECOMB 1999

Efficient q-Gram Filters for Finding All ε-Matches over a Given Length.
Rasmussen, Stoye, Myers, Journal of Computational Biology, 2006

Better filtering with gapped q-grams.
Stefan Burkhardt and Juha Kärkkäinen, Fundamenta Informaticae, 2003

Algorithmic Bioinformatics 28

Summary

Approximatie pattern matching with index

NFA or branching on FM index

Branching on suffix tree

Examples: bwa-sw

Seed-extend principle: avoid branching by using exact matches

Examples: bwa-mem, bowtie

q-gram lemma

Fast q-gram access: q-gram index

Filtration approaches (QUASAR, SWIFT)

Idea of gapped q-grams

Algorithmic Bioinformatics 29

Possible Exam Questions

How can a suffix tree be used to search for approximate pattern occurrences?

What is the resulting running time?

What is the benefit of using an FM index instead of a suffix tree?

Explain approximate search on an FM index by means of an example.

What’s the main idea behind the “seed and extend” paradigm?

What is the purpose of a filter?

What is a lossy vs. a lossless filter?

Explain the q-gram lemma.

What is a q-gram index? How is it related to the suffix array?

What is the idea of gapped q-grams?

Algorithmic Bioinformatics 30

