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Overview

Previously: Error Tolerant Pattern Matching

Many online algorithms

Index-based: Error-tolerant backward search (FM-index + NFA-like table)

Today’s Lecture: Genome-Wide DNA Sequence Search
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Read Mapping and DNA Database Search Problems

Read Mapping

Find (possible) origin(s) of (short) piece of DNA (“read”) within genome;
Find (possible) origin(s) of parts of (long) piece of DNA within genome.

DNA Database Search

Find (parts of) DNA query in huge DNA database (NCBI GenBank)
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Reminder: Error Tolerant Backward Search
T = AAAACGTACCT$, P = ACTGT, Σ = {A, C, G, T}:

[0, 11] [10, 11] [9, 9]

[1, 5]

[6, 8]

[9, 9]

[10, 11]

[0, 11]

[1, 5]

[6, 8]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[9, 9]

[7, 7] [5, 5]

k = 0

k ≤ 1

Σ Σ Σ Σ Σ

T G T C A

T G T C A

ε ε ε ε ε
Σ Σ Σ Σ Σ

Green edges: insertions

Red edges (ε): deletions

Black edges: matches (horizontal) and mismatches (diagonal)

Note: numbers for illustration only, not necessarily correct.
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Alternative: Branch on FM Index (no storage in states)

(Example: cta, Hamming distance 1.)   F         L

0 $ ctatata t

1 a t$ctata t

2 a tat$cta t

3 a tatat$c t

4 c tatatat $

5 t $ctatat a

6 t at$ctat a

7 t atat$ct a

8 t atatat$ c
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Running time of Approximate Backward Search

(with NFA states or by branching on-the-fly)

Worst case

All strings in edit/Hamming neighborhood are enumerated, i.e. the set{
P ′ ∈ Σ∗

∣∣ d(P,P ′) ≤ k
}
,

where P ∈ Σm is the pattern and k a distance threshold.

⇒ Running time is exponential in k in the worst case.

In practice, it might be less bad, depending on the string that is searched.
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Getting the Actual Positions of Matches

a

  F         L

0 $ ctatata t
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t
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c

1

0

t
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c

Question

Given: interval on BWT
Sought: position of matches in
original string

Answer

Use (sparse) suffix array pos
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Alternative: Branch on Suffix Tree (Forward Search)

Examples (Hamming distance 1 for simplicity): (1) acc, (2) bab

032145

$

$

b

c

a

$

b

c

a

$

$

b

c

a

$

c
a

a
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Approaches in Practice

Suffix tree (forward search) not used: memory footprint too large

NFA states not used (memory overhead)

bwa-sw: approximate backward search with branching on-the-fly,
intervals examined using depth-first search.

bwa-sw starts at several locations in the read (local matches),
allows for smaller edit distance thresholds

bwa-sw collects a large number of intervals first,
then performs batch lookup in suffix array

Literature: bwa-sw

Heng Li & Richard Durbin:
Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics 25(14):1754–1760 (2009).
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Seed and Extend Idea for
Filter-based Approaches
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Motivation

Branching on errors is computationally expensive

Running time exponential in the number of errors

Exact matches are inexpensive to compute

Idea: Find exact matches

of fixed length q (q-grams) or k (k-mers)
of maximal length (MEMs, maximal exact matches) using FM-index

Then perform anchored local alignment around the match (seed).

Literature: bwa-mem

Heng Li:
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
arXiv:1303.3997 [q-bio.GN]
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Pigeon Hole Principle, Seed and Extend

Example

When we allow a read to contain up to 1 error, the following scenarios are possible:

No error Error left Error right

More than one error?

Pigeon hole principle holds for d ≥ 1 errors:

Cut pattern into d + 1 parts

Then, at least one part without error has to exist.

Seed and Extend

Seed: Find origins of exact match

Extend: Continue search allowing errors around exact match
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Approximate Pattern Matching

R D R I

l

d

P

Seed-and-extend strategy
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Bowtie

Implementation of seed-extend in bowtie

Use two indexes: for searching forward/backward, respectively

Seed: search for left/right half without errors using FM index

Extend: continue search using branching in FM index

Variants used in other read mappers or search tools

seed phase using index, extend phase using alignment

multiple seeds, then alignment
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Abstraction: Filter-based approximate search

[Stefan Burkhardt, Ph.D. Thesis 2002]
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Filter-based Search

A filter restricts the expensive verification to promising regions of the target sequence.

A lossy filter may miss true matches in the target.

A lossless filter contains all true matches.

A good filter always balances sensitivity and speed.

true match true match 

Lossy Filter 
(contains False 
Negatives) 

Lossless filter 
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Definitions

q-gram

A q-gram of a string s is a substring of length q of s.

Matching Problem

Given a reference text T and a query string s,
the approximate matching problem with d differences and window length w
consists of finding a pair of substrings (s[i . . . i + w − 1], t) such that

1 s[i , i + w − 1] is a length-w substring of s, and t is a substring of T ,

2 dedit(s[i . . . i + w − 1], t) ≤ d , i.e., edit distance is at most d .
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Q-gram lemma

Lemma

Let an occurrence of s[i , i + w − 1] with at most d differences end at position j in T .
Then at least w + 1− (d + 1)q q-grams of s[i , i + w − 1] occur in T [j − w + 1, j ].

Proof

each error destroys at most q q-grams (Y positions below)

the last q − 1 positions have no q-grams (X positions below)

intact q-grams: w − dq − (q − 1) = w + 1− (d + 1)q

Example: q=3 (valid positions of 3-grams are M below)

target ATTGACAC

query ATTCACAC

3-grams MYYYMMXX
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QUASAR algorithm

Task: Find approximate matches of s in T

Seed-and-extend based on q-gram lemma

1 Pre-compute the threshold α for a window of length w using the q-gram lemma.

2 Partition T into blocks (larger than window length w)

3 Count all q-grams in s[1 . . .w ] for each block along T

4 Each block that contains an approximate match has a counter of at least α.
(The reverse is not true. We may have false positive blocks)

5 Advance the window in s from s[i . . . j ] to s[i + 1 . . . j + 1]
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QUASAR - counting q-grams

In order to count the q-gram matches in a window, we need an efficient data structure.

In order to count the q-gram matches in a window, we need an efficient data structure.
The q-gram index:

1 Construct the suffix array pos of T

2 Create a table of size |Σ|q that maps a q-gram to its starting rank in pos,
to allow constant time lookup.

3 q-grams are integer-encoded as numbers 0 . . . |Σ|q − 1,
e.g. DNA: TTGCCA = (332110)4 = 3988 (base-4 number)
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QUASAR - Blockwise counting

Keeping a counter for each possible window of length w of the text
would lead to a huge array of size O(|T |)
To save space, we define two arrays of blocks of size b ≥ 2w .
The first block array is shifted by b/2 positions against the second.

true match true match 
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QUASAR - Efficient counting and shifting

When the query window s[i . . . j ] is moved to s[i + 1 . . . j + 1],
the only difference for the block counters are two q-grams,
one that leaves (blue) and one that enters the window (red).

i j

ACTGTAAGAT

So for each shift update, change the block counters as follows:

subtract the count of the leading q-gram (blue) from blocks,
unless the block counter is ≥ α (lock-in)

add a count to all blocks that contain the trailing q-gram (red)
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Gapped q-Grams

Definition

Gapped q-grams are specified with a mask, a string of

# characters denote required matches

. characters denote “don’t care” positions

For example ##.#.# denotes a gapped 4-gram of span (length) 6.

Gapped q-grams can improve the filter efficiency by orders of magnitude.

The q-gram lemma is not tight for gapped q-grams and there is no closed formula
for computing the threshold for a given edit distance d .
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Gapped Q-Grams: Example

### ##.# w=11,  k=3 

[Stefan Burkhardt and Juha Kärkkäinen, Fundamenta Informaticae, 2003]
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SWIFT algorithm: Parallelograms instead of blocks
Slide length-w window over query, count q-grams in diagonals
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SWIFT - Examples

from Kehr, Weese, Reinert, BMC Bioinformatics 2011
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Other Tools

There are a number of read mappers that were made for the analysis of
next-generation sequencing reads against large genomes and use variants of filter
algorithms with q-grams

RMAP

RazerS and RazerS3

Hobbes

GEM

Stellar

and many more
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Literature

Q-gram Based Database Searching Using a Suffix Array (QUASAR).
Burkhardt et al., RECOMB 1999

Efficient q-Gram Filters for Finding All ε-Matches over a Given Length.
Rasmussen, Stoye, Myers, Journal of Computational Biology, 2006

Better filtering with gapped q-grams.
Stefan Burkhardt and Juha Kärkkäinen, Fundamenta Informaticae, 2003

Algorithmic Bioinformatics 28



Summary

Approximatie pattern matching with index

NFA or branching on FM index

Branching on suffix tree

Examples: bwa-sw

Seed-extend principle: avoid branching by using exact matches

Examples: bwa-mem, bowtie

q-gram lemma

Fast q-gram access: q-gram index

Filtration approaches (QUASAR, SWIFT)

Idea of gapped q-grams
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Possible Exam Questions

How can a suffix tree be used to search for approximate pattern occurrences?

What is the resulting running time?

What is the benefit of using an FM index instead of a suffix tree?

Explain approximate search on an FM index by means of an example.

What’s the main idea behind the “seed and extend” paradigm?

What is the purpose of a filter?

What is a lossy vs. a lossless filter?

Explain the q-gram lemma.

What is a q-gram index? How is it related to the suffix array?

What is the idea of gapped q-grams?
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