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Overview

Previously: Scoring Pairwise Sequence Alignments
m Score maximization with general scoring schemes,
m Four variants: global, semiglobal, overlapping, local

m Derivation and estimation of score matrices
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Overview

Previously: Scoring Pairwise Sequence Alignments
m Score maximization with general scoring schemes,
m Four variants: global, semiglobal, overlapping, local

m Derivation and estimation of score matrices

Today's Lecture: Alignment Statistics
m Scores of local alignments of random sequences
m E-values and P-values of local alignment scores
m Functional form of score distributions
|

Estimating parameters (ideas)
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Typical and Rare Scores of Local Alignments

Setting

m We have locally aligned sequences of lengths m, n.
Observed score is some s > 0.

m Is this unusually high, i.e., can it be explained by random chance or not?
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Typical and Rare Scores of Local Alignments

Setting

m We have locally aligned sequences of lengths m, n.
Observed score is some s > 0.

m Is this unusually high, i.e., can it be explained by random chance or not?

Approach
m Compute local alignment score distribution on random sequences.

m Depends on parameters 6

m lengths m, n
m scoring scheme (score matrix, gap costs)
m random text model (uniform iid, iid, Markov, etc.)

Algorithmic Bioinformatics H@ Hhnwors S5 ZBL S



Typical and Rare Scores of Local Alignments

Setting

m We have locally aligned sequences of lengths m, n.
Observed score is some s > 0.

m Is this unusually high, i.e., can it be explained by random chance or not?

Approach
m Compute local alignment score distribution on random sequences.

m Depends on parameters 6

m lengths m, n
m scoring scheme (score matrix, gap costs)
m random text model (uniform iid, iid, Markov, etc.)

m For fixed parameters 0, Pyg(S > s) is called the p-value of score s:

probability that a local alignment of two random sequences
achieves a score S at least as high as the observed s.
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Example: Simulation of Score Distribution

Parameters
T = 1000000 random sequence pairs with m = n = 100,
BLOSUM®62 score matrix, gaps —5, i.i.d. uniform amino acid frequencies
Our interest is in the far right tail of the distribution (hard to simulate: rare events).

probability mass function (pmf)
3 ZB s
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Theory

Definitions
m 0: parameters m, n, score matrix, gap penalties, text model
m S: random variable, optimal local alignment score of two random sequences

m Py(S > s): p-value of observed score s (< 0.05 is called significant).
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Theory

Definitions

m 0: parameters m, n, score matrix, gap penalties, text model
S: random variable, optimal local alignment score of two random sequences
Py(S > s): p-value of observed score s (< 0.05 is called significant).

N(s): (random) number of independent local alignments with score > s

Ey[N(s)]: E-value of s: expected number of local alignments with score > s
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Theory

Definitions

m 0: parameters m, n, score matrix, gap penalties, text model
S: random variable, optimal local alignment score of two random sequences
Py(S > s): p-value of observed score s (< 0.05 is called significant).

N(s): (random) number of independent local alignments with score > s

Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumption and Observation

If s is sufficiently large (E[N(s)] < 1, P(S > s) < 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.
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The Poisson Distribution

Intuition
Poisson distribution counts number of successes X when

m there are many attempts n — oo,

m each has a small probability of success p — 0,

m such that the expected number of successes \ := np > 0 is constant;
Limit of Binomial distribution P(X = k) = (}) p* (1 — p)"k
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The Poisson Distribution

Intuition
Poisson distribution counts number of successes X when

m there are many attempts n — oo,

m each has a small probability of success p — 0,

m such that the expected number of successes \ := np > 0 is constant;
Limit of Binomial distribution P(X = k) = (}) p* (1 — p)"k

Poisson Distribution

The entire distribution P(X = k) depends only on its expected value A > 0:

P(X=k)=e*-X/kl  (k=0,1,2,...)
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The Poisson Distribution

Intuition
Poisson distribution counts number of successes X when

m there are many attempts n — oo,

m each has a small probability of success p — 0,

m such that the expected number of successes \ := np > 0 is constant;
Limit of Binomial distribution P(X = k) = (}) p* (1 — p)"k

Poisson Distribution

The entire distribution P(X = k) depends only on its expected value A > 0:
P(X=k)=e*-X/kl  (k=0,1,2,...)
Task: Verify that > 27 P(X = k) =1and E[X] =327 kP(X = k) = \.

vvvvvvvvvvv
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Example: Poisson Distribution for Different Values of A
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Source: by Skbkekas - own work, CC BY 3.0, https://commons.wikimedia.org]qq/index4php?curid=9447142
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Back to Theory

Definitions
m S: random variable, optimal local alignment score of two random sequences
Py(S > s): p-value of observed score s

N(s): (random) number of independent local alignments with score > s

Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumption and Observation

m If s is sufficiently large (E[N(s)] < 1, P(S > s) < 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

m Equivalent events: N(s) >1<«<=S>s
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Back to Theory

Definitions

m S: random variable, optimal local alignment score of two random sequences
m Py(S > s): p-value of observed score s

m N(s): (random) number of independent local alignments with score > s

m Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumption and Observation

m If s is sufficiently large (E[N(s)] < 1, P(S > s) < 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

m Equivalent events: N(s) >1<«<=S>s

p=P(S§>s)=P(N(s)>1)=1-P(N(s) =0)=1—-e = A=E (0<A<1)
“For small E-values E < 1 and p-values p < 1, we have p =~ E."
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Computing the E-value (and p-value)

Definitions
m N(s): (random) number of independent local alignments with score > s

m E; = Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Algorithmic Bioinformatics



Computing the E-value (and p-value)

Definitions
m N(s): (random) number of independent local alignments with score > s

m E; = Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumptions and Observation

m E; decreases exponentially with s:
Essentially, the only way of increasing the score is more matches in a row.
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Computing the E-value (and p-value)

Definitions
m N(s): (random) number of independent local alignments with score > s

m E; = Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumptions and Observation

m E; decreases exponentially with s:
Essentially, the only way of increasing the score is more matches in a row.

m E; increases linearly with m, n:
Longer sequence offer more locations where a high-scoring alignment could be.
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Computing the E-value (and p-value)

Definitions
m N(s): (random) number of independent local alignments with score > s

m E; = Ey[N(s)]: E-value of s: expected number of local alignments with score > s

Assumptions and Observation

m E; decreases exponentially with s:
Essentially, the only way of increasing the score is more matches in a row.

m E; increases linearly with m, n:
Longer sequence offer more locations where a high-scoring alignment could be.

m For small E; (i.e., large enough s),
ps ~ Es~ C-mn-q° (C>0and0<g<1)
with constants C, g depending on scoring scheme and text model.
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Estimating Constants C, g

Logarithmic view: Affine function
Examine high-scoring tail of score distribution of random local alignments

ps~Es~C-mn-q° (C>0and0<g<1)
log ps ~ log C + log(mn) + s - log q
= K + log(mn) — As (K =log C and A > 0)

= log p-value is a falling affine function of s with slope —), offset K + log(mn).

(Here A: —logg >0 and K :=log C.)
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Estimating Constants C, g

Logarithmic view: Affine function
Examine high-scoring tail of score distribution of random local alignments

ps~Es~C-mn-q° (C>0and0<g<1)
log ps ~ log C + log(mn) + s - log q
= K + log(mn) — As (K =log C and A > 0)

= log p-value is a falling affine function of s with slope —), offset K + log(mn).
(Here A: —logg >0 and K :=log C.)

Naive simulation
m Create T random sequence pairs of length m, n according to text model

m Compute T optimal local alignment scores S1,...S7 and empirical p-values
ps = |{i : Si > s}|/T for all sufficiently large s
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Estimating Constants

Fit an affine function from empirical p-values

We have a functional form and empirical observations for log ps:
log ps = K + log(mn) — As
log ps = log(|{i : Si > s}|/T)

pmf ccdf log ccdf
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Estimating Constants: Fit affine function

Algorithmic Bioinformatics
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Estimating Constants: Fit affine function
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Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate
Need 1M (10°) samples to have 10000 (10%) samples in upper 1%.
Cannot fit well for very rare events (too few samples, say < 100).

Must fit the (theoretical) functional shape on a limited range.

High computational load for limited effectiveness (99% of simulation useless).
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Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate
Need 1M (10°) samples to have 10000 (10%) samples in upper 1%.
Cannot fit well for very rare events (too few samples, say < 100).

Must fit the (theoretical) functional shape on a limited range.

High computational load for limited effectiveness (99% of simulation useless).

More effective simulations

m Use more than one score per random sequence pair:
many independent local maxima in local alignment matrix
(islands in a sea of zeros)
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Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate
Need 1M (10°) samples to have 10000 (10%) samples in upper 1%.
Cannot fit well for very rare events (too few samples, say < 100).

Must fit the (theoretical) functional shape on a limited range.

High computational load for limited effectiveness (99% of simulation useless).

More effective simulations
m Use more than one score per random sequence pair:
many independent local maxima in local alignment matrix
(islands in a sea of zeros)

m Use importance sampling: Sample rare events more frequently,
apply correction factor for computing empirical p-values.
(Details can be difficult; ongoing research)
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Islands in a Sea of Zeros

Algorithmic Bioinformatics

Color-coded 3D visualization of a lo-
cal alignment matrix.

The peak score of every independent
island can be considered of the his-
togram, not only the highest peak.

Source:

SF Altschul, R Bundschuh, RM
Olsen, T Hwa: The estimation of
statistical parameters for local align-
ment score distributions.  Nucleic
acids research 29:2(2001) 351-361.
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Importance Sampling

Create pairs of more related
sequences by a random walk
that locally modifies each se-
quence. Compute correction
factors (probability of indepen-
dent random pair vs. probabil-
ity of pair created by random
walk of certain length).

Source:

S Wolfsheimer, | Herms, S Rah-
mann et al. Accurate statis-
tics for local sequence align-
ment with position-dependent
scoring by rare-event sampling.
BMC Bioinformatics 12, 47
(2011).
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Figure 2 Monte Carlo moves used in the simulation. (a) substitution, (b) insertion with left shift, (c) insertion with right shift,(d) deletion with
right shift and (e) deletion with left shift.
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Key Points

Significance depends on random model and parameters
m Random text models: i.i.d. uniform, i.i.d., Markov, etc.
m Sequence lengths m, n, score matrix, gap costs

m p-value hacking: tuning model + parameters until results become significant.
Scientific fraud, but unfortunately relatively widespread behavior.
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Key Points

Significance depends on random model and parameters
m Random text models: i.i.d. uniform, i.i.d., Markov, etc.
m Sequence lengths m, n, score matrix, gap costs

m p-value hacking: tuning model + parameters until results become significant.
Scientific fraud, but unfortunately relatively widespread behavior.

Functional form is robust against model changes

m Same behavior p(s) = C-exp(—As) holds for many variations of the assumptions:

m Both sequences random, same composition (today)
m Both sequences random, different compositions
m Only one sequence random, other sequence fixed

m Generalization: Locally aligning a query sequence to a pangenome graph,;
same parametric form apparently also holds (current research).
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Summary

Alignment Statistics

Simple random sequence models
Definition: E-value, p-value of an observed score

Score ccdf (complementary cumulative distribution function) — p-values

|
|
m Exponential decrease of p-value with increasing score (line in log-plot)
m Parametric form p(s) = C - exp(—A\s) is robust against model changes
]

Challenge: estimating C, \ efficiently (e.g., importance sampling)
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Possible Exam Questions

Define the p-value and E-value of an observed local alignment score.
Why is p-value ~ E-value when both are very small?
Explain why the parametric form p(s) = C - exp(—As) holds.

How do the sequence lengths m, n enter the parametric form?

How can the parameters C, \ be estimated?
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