

Alignment Statistics

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previously: Scoring Pairwise Sequence Alignments

- Score maximization with general scoring schemes,
- Four variants: global, semiglobal, overlapping, local
- Derivation and estimation of score matrices

Overview

Previously: Scoring Pairwise Sequence Alignments

- Score maximization with general scoring schemes,
- Four variants: global, semiglobal, overlapping, local
- Derivation and estimation of score matrices

Today's Lecture: Alignment Statistics

- Scores of local alignments of random sequences
- E-values and P-values of local alignment scores
- Functional form of score distributions
- Estimating parameters (ideas)

Typical and Rare Scores of Local Alignments

Setting

- We have locally aligned sequences of lengths *m*, *n*. Observed score is some s ≥ 0.
- Is this unusually high, i.e., can it be explained by random chance or not?

Typical and Rare Scores of Local Alignments

Setting

- We have locally aligned sequences of lengths m, n. Observed score is some $s \ge 0$.
- Is this unusually high, i.e., can it be explained by random chance or not?

Approach

- Compute local alignment score distribution on random sequences.
- \blacksquare Depends on parameters θ
 - lengths m, n
 - scoring scheme (score matrix, gap costs)
 - random text model (uniform iid, iid, Markov, etc.)

Typical and Rare Scores of Local Alignments

Setting

- We have locally aligned sequences of lengths *m*, *n*. Observed score is some s ≥ 0.
- Is this unusually high, i.e., can it be explained by random chance or not?

Approach

- Compute local alignment score distribution on random sequences.
- \blacksquare Depends on parameters θ
 - lengths m, n
 - scoring scheme (score matrix, gap costs)
 - random text model (uniform iid, iid, Markov, etc.)
- For fixed parameters θ, P_θ(S ≥ s) is called the p-value of score s: probability that a local alignment of two random sequences achieves a score S at least as high as the observed s.

Example: Simulation of Score Distribution

Parameters

 $T = 1\,000\,000$ random sequence pairs with m = n = 100,

BLOSUM62 score matrix, gaps -5, i.i.d. uniform amino acid frequencies.

Our interest is in the far right tail of the distribution (hard to simulate: rare events).

complementary cumulative distribution function (ccdf)

Theory

Definitions

- θ : parameters m, n, score matrix, gap penalties, text model
- S: random variable, optimal local alignment score of two random sequences
- $\mathbf{P}_{\theta}(S \ge s)$: **p-value** of observed score s (< 0.05 is called significant).

Theory

Definitions

- θ : parameters m, n, score matrix, gap penalties, text model
- S: random variable, optimal local alignment score of two random sequences
- $\mathbf{P}_{\theta}(S \ge s)$: **p-value** of observed score s (< 0.05 is called significant).
- N(s): (random) number of independent local alignments with score $\geq s$
- **E**_{θ}[*N*(*s*)]: **E**-value of *s*: expected number of local alignments with score $\geq s$

Theory

Definitions

- θ : parameters m, n, score matrix, gap penalties, text model
- S: random variable, optimal local alignment score of two random sequences
- $\mathbf{P}_{\theta}(S \ge s)$: **p-value** of observed score s (< 0.05 is called significant).
- N(s): (random) number of independent local alignments with score $\geq s$
- **E**_{θ}[*N*(*s*)]: **E**-value of *s*: expected number of local alignments with score $\geq s$

Assumption and Observation

If s is sufficiently large ($\mathbf{E}[N(s)] \ll 1$, $\mathbf{P}(S \ge s) \le 0.01$), we have a rare event. Then N(s) approximately has a Poisson distribution.

The Poisson Distribution

Intuition

Poisson distribution counts number of successes X when

- there are many attempts $n \to \infty$,
- each has a small probability of success $p \rightarrow 0$,
- such that the expected number of successes $\lambda := np > 0$ is constant;
- Limit of Binomial distribution $\mathbf{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$

The Poisson Distribution

Intuition

Poisson distribution counts number of successes X when

- there are many attempts $n \to \infty$,
- each has a small probability of success $p \rightarrow 0$,
- such that the expected number of successes $\lambda := np > 0$ is constant;

Limit of Binomial distribution $\mathbf{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$

Poisson Distribution

The entire distribution $\mathbf{P}(X = k)$ depends only on its expected value $\lambda > 0$:

$$P(X = k) = e^{-\lambda} \cdot \lambda^k / k! \qquad (k = 0, 1, 2, \dots)$$

The Poisson Distribution

Intuition

Poisson distribution counts number of successes X when

- there are many attempts $n \to \infty$,
- each has a small probability of success $p \rightarrow 0$,
- such that the expected number of successes $\lambda := np > 0$ is constant; Limit of Binomial distribution $\mathbf{P}(X = k) = {n \choose k} p^k (1-p)^{n-k}$

Poisson Distribution

The entire distribution $\mathbf{P}(X = k)$ depends only on its expected value $\lambda > 0$:

$$P(X = k) = e^{-\lambda} \cdot \lambda^k / k!$$
 $(k = 0, 1, 2, ...)$

Task: Verify that $\sum_{k=0}^{\infty} \mathbf{P}(X = k) = 1$ and $\mathbf{E}[X] = \sum_{k=0}^{\infty} k \mathbf{P}(X = k) = \lambda$.

Example: Poisson Distribution for Different Values of λ

Source: by Skbkekas - own work, CC BY 3.0, https://commons.wikimedia.org/p/index.php?curid=9447142

Back to Theory

Definitions

- S: random variable, optimal local alignment score of two random sequences
- $\mathbf{P}_{\theta}(S \ge s)$: **p-value** of observed score *s*
- N(s): (random) number of independent local alignments with score $\geq s$
- **E**_{θ}[*N*(*s*)]: **E**-value of *s*: expected number of local alignments with score $\geq s$

Assumption and Observation

- If s is sufficiently large ($\mathbf{E}[N(s)] \ll 1$, $\mathbf{P}(S \ge s) \le 0.01$), we have a rare event. Then N(s) approximately has a Poisson distribution.
- Equivalent events: $N(s) \ge 1 \iff S \ge s$

Back to Theory

Definitions

- S: random variable, optimal local alignment score of two random sequences
- $\mathbf{P}_{\theta}(S \ge s)$: **p-value** of observed score *s*
- N(s): (random) number of independent local alignments with score $\geq s$
- **E**_{θ}[*N*(*s*)]: **E**-value of *s*: expected number of local alignments with score $\geq s$

Assumption and Observation

- If s is sufficiently large ($\mathbf{E}[N(s)] \ll 1$, $\mathbf{P}(S \ge s) \le 0.01$), we have a rare event. Then N(s) approximately has a Poisson distribution.
- Equivalent events: $N(s) \ge 1 \iff S \ge s$

 $p = \mathbf{P}(S \ge s) = \mathbf{P}(N(s) \ge 1) = 1 - \mathbf{P}(N(s) = 0) = 1 - e^{-\lambda} \approx \lambda = E$ (0 < $\lambda \ll 1$)

"For small E-values $E \ll 1$ and p-values $p \ll 1$, we have $p \approx E$."

Definitions

- N(s): (random) number of independent local alignments with score $\geq s$
- $E_s = E_{\theta}[N(s)]$: E-value of s: expected number of local alignments with score $\geq s$

Definitions

- N(s): (random) number of independent local alignments with score $\geq s$
- $E_s = E_{\theta}[N(s)]$: E-value of s: expected number of local alignments with score $\geq s$

Assumptions and Observation

• *E_s* decreases exponentially with *s*:

Essentially, the only way of increasing the score is more matches in a row.

Definitions

- N(s): (random) number of independent local alignments with score $\geq s$
- $E_s = E_{\theta}[N(s)]$: E-value of s: expected number of local alignments with score $\geq s$

Assumptions and Observation

- E_s decreases exponentially with s:
 Essentially, the only way of increasing the score is more matches in a row.
- E_s increases linearly with m, n:

Longer sequence offer more locations where a high-scoring alignment could be.

Definitions

- N(s): (random) number of independent local alignments with score $\geq s$
- $E_s = E_{\theta}[N(s)]$: E-value of s: expected number of local alignments with score $\geq s$

Assumptions and Observation

E_s decreases exponentially with s:
 Essentially, the only way of increasing the score is more matches in a row.

E_s increases linearly with m, n: Longer sequence offer more locations where a high-scoring alignment could be.

For small *E_s* (i.e., large enough *s*),

$$p_s pprox E_s pprox C \cdot mn \cdot q^s$$
 (C > 0 and 0 < q < 1)

with constants C, q depending on scoring scheme and text model.

Estimating Constants C, q

Logarithmic view: Affine function

Examine high-scoring tail of score distribution of random local alignments

$$p_s pprox E_s pprox C \cdot mn \cdot q^s$$
 (C > 0 and 0 < q < 1)
 $\log p_s pprox \log C + \log(mn) + s \cdot \log q$
 $= K + \log(mn) - \lambda s$ (K = log C and $\lambda > 0$)

⇒ log p-value is a falling affine function of s with slope $-\lambda$, offset $K + \log(mn)$. (Here $\lambda : -\log q > 0$ and $K := \log C$.)

Estimating Constants C, q

Logarithmic view: Affine function

Examine high-scoring tail of score distribution of random local alignments

$$p_s pprox E_s pprox C \cdot mn \cdot q^s$$
 (C > 0 and 0 < q < 1)
 $\log p_s pprox \log C + \log(mn) + s \cdot \log q$
 $= K + \log(mn) - \lambda s$ (K = log C and $\lambda > 0$)

⇒ log p-value is a falling affine function of s with slope $-\lambda$, offset $K + \log(mn)$. (Here $\lambda : -\log q > 0$ and $K := \log C$.)

Naïve simulation

- Create T random sequence pairs of length m, n according to text model
- Compute T optimal local alignment scores $S_1, \ldots S_T$ and empirical p-values $\hat{p}_s := |\{i : S_i \ge s\}|/T$ for all sufficiently large s

Estimating Constants

Fit an affine function from empirical p-values

We have a functional form and empirical observations for log p_s :

 $\log p_s \approx K + \log(mn) - \lambda s$ $\log \hat{p}_s = \log(|\{i: S_i \ge s\}|/T)$

Estimating Constants: Fit affine function

Estimating Constants: Fit affine function

Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate

- Need 1M (10^6) samples to have 10000 (10^4) samples in upper 1%.
- Cannot fit well for very rare events (too few samples, say < 100).
- Must fit the (theoretical) functional shape on a limited range.
- High computational load for limited effectiveness (99% of simulation useless).

Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate

- Need 1M (10^6) samples to have 10000 (10^4) samples in upper 1%.
- Cannot fit well for very rare events (too few samples, say < 100).
- Must fit the (theoretical) functional shape on a limited range.
- High computational load for limited effectiveness (99% of simulation useless).

More effective simulations

 Use more than one score per random sequence pair: many independent local maxima in local alignment matrix (islands in a sea of zeros)

Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate

- Need 1M (10^6) samples to have 10000 (10^4) samples in upper 1%.
- Cannot fit well for very rare events (too few samples, say < 100).
- Must fit the (theoretical) functional shape on a limited range.
- High computational load for limited effectiveness (99% of simulation useless).

More effective simulations

- Use more than one score per random sequence pair: many independent local maxima in local alignment matrix (islands in a sea of zeros)
- Use importance sampling: Sample rare events more frequently, apply correction factor for computing empirical p-values. (Details can be difficult; ongoing research)

Islands in a Sea of Zeros

Color-coded 3D visualization of a local alignment matrix.

The peak score of every independent island can be considered of the histogram, not only the highest peak.

Source:

SF Altschul, R Bundschuh, RM Olsen, T Hwa: The estimation of statistical parameters for local alignment score distributions. Nucleic acids research 29:2(2001) 351–361.

Importance Sampling

Create pairs of more related sequences by a random walk that locally modifies each sequence. Compute correction factors (probability of independent random pair vs. probability of pair created by random walk of certain length).

Source:

S Wolfsheimer, I Herms, S Rahmann et al. Accurate statistics for local sequence alignment with position-dependent scoring by rare-event sampling. BMC Bioinformatics 12, 47 (2011).

Figure 2 Monte Carlo moves used in the simulation. (a) substitution, (b) insertion with left shift, (c) insertion with right shift,(d) deletion with right shift and (e) deletion with left shift.

Key Points

Significance depends on random model and parameters

- Random text models: i.i.d. uniform, i.i.d., Markov, etc.
- Sequence lengths *m*, *n*, score matrix, gap costs
- p-value hacking: tuning model + parameters until results become significant.
 Scientific fraud, but unfortunately relatively widespread behavior.

Key Points

Significance depends on random model and parameters

- Random text models: i.i.d. uniform, i.i.d., Markov, etc.
- Sequence lengths *m*, *n*, score matrix, gap costs
- p-value hacking: tuning model + parameters until results become significant.
 Scientific fraud, but unfortunately relatively widespread behavior.

Functional form is robust against model changes

- Same behavior $p(s) = C \cdot \exp(-\lambda s)$ holds for many variations of the assumptions:
 - Both sequences random, same composition (today)
 - Both sequences random, different compositions
 - Only one sequence random, other sequence fixed
- Generalization: Locally aligning a query sequence to a pangenome graph; same parametric form apparently also holds (current research).

Summary

Alignment Statistics

- Simple random sequence models
- Definition: E-value, p-value of an observed score
- \blacksquare Score ccdf (complementary cumulative distribution function) \rightarrow p-values
- Exponential decrease of p-value with increasing score (line in log-plot)
- Parametric form $p(s) = C \cdot \exp(-\lambda s)$ is robust against model changes
- Challenge: estimating C, λ efficiently (e.g., importance sampling)

- Define the p-value and E-value of an observed local alignment score.
- Why is p-value pprox E-value when both are very small?
- Explain why the parametric form $p(s) = C \cdot \exp(-\lambda s)$ holds.
- How do the sequence lengths *m*, *n* enter the parametric form?
- How can the parameters C, λ be estimated?

