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Overview

Previously: Scoring Pairwise Sequence Alignments

Score maximization with general scoring schemes,

Four variants: global, semiglobal, overlapping, local

Derivation and estimation of score matrices

Today’s Lecture: Alignment Statistics

Scores of local alignments of random sequences

E-values and P-values of local alignment scores

Functional form of score distributions

Estimating parameters (ideas)
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Typical and Rare Scores of Local Alignments

Setting

We have locally aligned sequences of lengths m, n.
Observed score is some s ≥ 0.

Is this unusually high, i.e., can it be explained by random chance or not?

Approach

Compute local alignment score distribution on random sequences.

Depends on parameters θ

lengths m, n
scoring scheme (score matrix, gap costs)
random text model (uniform iid, iid, Markov, etc.)

For fixed parameters θ, Pθ(S ≥ s) is called the p-value of score s:
probability that a local alignment of two random sequences
achieves a score S at least as high as the observed s.
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Example: Simulation of Score Distribution

Parameters

T = 1 000 000 random sequence pairs with m = n = 100,
BLOSUM62 score matrix, gaps −5, i.i.d. uniform amino acid frequencies.
Our interest is in the far right tail of the distribution (hard to simulate: rare events).

probability mass function (pmf) complementary cumulative distribution function (ccdf)
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Theory

Definitions

θ: parameters m, n, score matrix, gap penalties, text model

S : random variable, optimal local alignment score of two random sequences

Pθ(S ≥ s): p-value of observed score s (< 0.05 is called significant).

N(s): (random) number of independent local alignments with score ≥ s

Eθ[N(s)]: E-value of s: expected number of local alignments with score ≥ s

Assumption and Observation

If s is sufficiently large (E[N(s)]� 1, P(S ≥ s) ≤ 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

Algorithmic Bioinformatics 5



Theory

Definitions

θ: parameters m, n, score matrix, gap penalties, text model

S : random variable, optimal local alignment score of two random sequences

Pθ(S ≥ s): p-value of observed score s (< 0.05 is called significant).

N(s): (random) number of independent local alignments with score ≥ s

Eθ[N(s)]: E-value of s: expected number of local alignments with score ≥ s

Assumption and Observation

If s is sufficiently large (E[N(s)]� 1, P(S ≥ s) ≤ 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

Algorithmic Bioinformatics 5



Theory

Definitions

θ: parameters m, n, score matrix, gap penalties, text model

S : random variable, optimal local alignment score of two random sequences

Pθ(S ≥ s): p-value of observed score s (< 0.05 is called significant).

N(s): (random) number of independent local alignments with score ≥ s

Eθ[N(s)]: E-value of s: expected number of local alignments with score ≥ s

Assumption and Observation

If s is sufficiently large (E[N(s)]� 1, P(S ≥ s) ≤ 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

Algorithmic Bioinformatics 5



The Poisson Distribution

Intuition

Poisson distribution counts number of successes X when

there are many attempts n→∞,

each has a small probability of success p → 0,

such that the expected number of successes λ := np > 0 is constant;

Limit of Binomial distribution P(X = k) =
(n
k

)
pk (1− p)n−k

Poisson Distribution

The entire distribution P(X = k) depends only on its expected value λ > 0:

P(X = k) = e−λ · λk/k! (k = 0, 1, 2, . . . )

Task: Verify that
∑∞

k=0 P(X = k) = 1 and E[X ] =
∑∞

k=0 k P(X = k) = λ.
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Example: Poisson Distribution for Different Values of λ

Source: by Skbkekas - own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9447142
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Back to Theory

Definitions

S : random variable, optimal local alignment score of two random sequences

Pθ(S ≥ s): p-value of observed score s

N(s): (random) number of independent local alignments with score ≥ s

Eθ[N(s)]: E-value of s: expected number of local alignments with score ≥ s

Assumption and Observation

If s is sufficiently large (E[N(s)]� 1, P(S ≥ s) ≤ 0.01), we have a rare event.
Then N(s) approximately has a Poisson distribution.

Equivalent events: N(s) ≥ 1⇐⇒ S ≥ s

p = P(S ≥ s) = P(N(s) ≥ 1) = 1−P(N(s) = 0) = 1− e−λ ≈ λ = E (0 < λ� 1)

“For small E-values E � 1 and p-values p � 1, we have p ≈ E .”
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Computing the E-value (and p-value)

Definitions

N(s): (random) number of independent local alignments with score ≥ s

Es = Eθ[N(s)]: E-value of s: expected number of local alignments with score ≥ s

Assumptions and Observation

Es decreases exponentially with s:
Essentially, the only way of increasing the score is more matches in a row.

Es increases linearly with m, n:
Longer sequence offer more locations where a high-scoring alignment could be.

For small Es (i.e., large enough s),

ps ≈ Es ≈ C ·mn · qs (C > 0 and 0 < q < 1)

with constants C , q depending on scoring scheme and text model.
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Estimating Constants C , q

Logarithmic view: Affine function

Examine high-scoring tail of score distribution of random local alignments

ps ≈ Es ≈ C ·mn · qs (C > 0 and 0 < q < 1)

log ps ≈ logC + log(mn) + s · log q

= K + log(mn)− λs (K = logC and λ > 0)

⇒ log p-value is a falling affine function of s with slope −λ, offset K + log(mn).
(Here λ : − log q > 0 and K := logC .)

Näıve simulation

Create T random sequence pairs of length m, n according to text model

Compute T optimal local alignment scores S1, . . .ST and empirical p-values
p̂s := |{i : Si ≥ s}|/T for all sufficiently large s
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Estimating Constants

Fit an affine function from empirical p-values

We have a functional form and empirical observations for log ps :

log ps ≈ K + log(mn)− λs
log p̂s = log(|{i : Si ≥ s}|/T )

pmf ccdf log ccdf

Algorithmic Bioinformatics 11



Estimating Constants: Fit affine function
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Estimating Constants: Fit affine function
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Challenges and Possible Solutions

Rare events (upper 1% scores) are hard to simulate

Need 1M (106) samples to have 10 000 (104) samples in upper 1%.

Cannot fit well for very rare events (too few samples, say < 100).

Must fit the (theoretical) functional shape on a limited range.

High computational load for limited effectiveness (99% of simulation useless).

More effective simulations

Use more than one score per random sequence pair:
many independent local maxima in local alignment matrix
(islands in a sea of zeros)

Use importance sampling: Sample rare events more frequently,
apply correction factor for computing empirical p-values.
(Details can be difficult; ongoing research)
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Islands in a Sea of Zeros

Color-coded 3D visualization of a lo-
cal alignment matrix.

The peak score of every independent
island can be considered of the his-
togram, not only the highest peak.

Source:
SF Altschul, R Bundschuh, RM
Olsen, T Hwa: The estimation of
statistical parameters for local align-
ment score distributions. Nucleic
acids research 29:2(2001) 351–361.
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Importance Sampling

Create pairs of more related
sequences by a random walk
that locally modifies each se-
quence. Compute correction
factors (probability of indepen-
dent random pair vs. probabil-
ity of pair created by random
walk of certain length).

Source:
S Wolfsheimer, I Herms, S Rah-
mann et al. Accurate statis-
tics for local sequence align-
ment with position-dependent
scoring by rare-event sampling.
BMC Bioinformatics 12, 47
(2011).
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Key Points

Significance depends on random model and parameters

Random text models: i.i.d. uniform, i.i.d., Markov, etc.

Sequence lengths m, n, score matrix, gap costs

p-value hacking: tuning model + parameters until results become significant.
Scientific fraud, but unfortunately relatively widespread behavior.

Functional form is robust against model changes

Same behavior p(s) = C · exp(−λs) holds for many variations of the assumptions:

Both sequences random, same composition (today)
Both sequences random, different compositions
Only one sequence random, other sequence fixed

Generalization: Locally aligning a query sequence to a pangenome graph;
same parametric form apparently also holds (current research).
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Summary

Alignment Statistics

Simple random sequence models

Definition: E-value, p-value of an observed score

Score ccdf (complementary cumulative distribution function) → p-values

Exponential decrease of p-value with increasing score (line in log-plot)

Parametric form p(s) = C · exp(−λs) is robust against model changes

Challenge: estimating C , λ efficiently (e.g., importance sampling)
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Possible Exam Questions

Define the p-value and E-value of an observed local alignment score.

Why is p-value ≈ E-value when both are very small?

Explain why the parametric form p(s) = C · exp(−λs) holds.

How do the sequence lengths m, n enter the parametric form?

How can the parameters C , λ be estimated?
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