

Score Matrices

Algorithms for Sequence Analysis

Sven Rahmann (with material from Tobias Müller, Würzburg)

Summer 2021

Overview

Previously: Pairwise Sequence Alignment

- score maximization with general scoring schemes,
- Four variants: global, semiglobal, overlapping, local

Overview

Previously: Pairwise Sequence Alignment

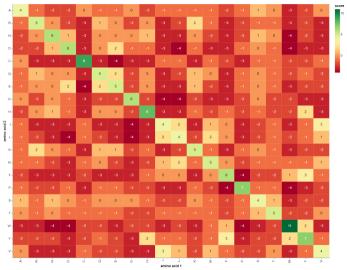
- score maximization with general scoring schemes,
- Four variants: global, semiglobal, overlapping, local

Today's Lecture: Score Matrices

- Where do (families of) score matrices (like BLOSUM62) come from?
- Evolutionary distances (units PAM, PEM)
- Excursion: Time-continuous Markov processes, matrix exponentials
- Estimation of score matrices from alignments of different divergence times
- General vs. special purpose score matrices

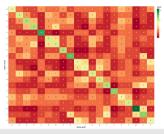
Score Matrices for Comparing Proteins

Example: BLOSUM62 Scoring Matrix for Amino Acids



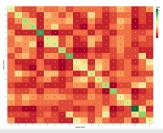
Algorithmic Bioinformatics

How Score Matrices are Obtained



- Idea: Physically and chemically similar pairs of amino acids have positive score, dissimilar pairs have negative score. Zero is a neutral value.
- However, who is to quantify "similarity"? Experts ?

How Score Matrices are Obtained



- Idea: Physically and chemically similar pairs of amino acids have positive score, dissimilar pairs have negative score. Zero is a neutral value.
- However, who is to quantify "similarity"? Experts ?
- Instead, use data-driven approach. (Today, you call this machine learning.)
- Observe the (relative) frequencies of amino acids in proteins.
- Observe the joint frequencies of amino acids in confirmed alignments: Similar amino acids more often replace each other than dissimilar amino acids.

Algorithmic Bioinformatics

Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments

24.7% identity in 97 aa overlap; score: 109

Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments

24.7% identity in 97 aa overlap; score: 109

Examples of pair counts

$$\#(D, E) = 4$$
$$\#(N, F) = 1$$

Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments

24.7% identity in 97 aa overlap; score: 109

Examples of pair counts

$$\#(D, E) = 4$$

 $\#(N, F) = 1$

Assumption (for now)

All alignments used for counting have the same **degree of divergence** (evolutionary distance). Otherwise, they are not be comparable.

Markov Model of Protein Evolution

Assumptions

- Replacement probabilities at any site depend only on the amino acid at that site and on transition probabilities, but not on the history (past) at that site.
- Sequences have average (typical) amino acid composition.
- Time-reversible process (direction of time arrow is irrelevant)

Markov Model of Protein Evolution

Model Parameters

- Amino acid frequencies $\pi = (\pi_i)_{i=1}^{20}$ (row vector)
- Conditional transition probabilities for a fixed time unit ("1 step"):

$$P = (P_{ij})$$
 $(i = 1, ..., 20, j = 1, ..., 20)$

with $\sum_{j=1}^{20} P_{ij} = 1$ for all *i* (rows sum to 1).

One step of transitions must not change overall frequencies,
 i.e., π must be the/a stationary distribution for P:

$$\sum_{i=1}^{20} \pi_i \cdot P_{ij} = \pi_j \qquad ext{or} \qquad \pi \cdot P = \pi \,.$$

Symmetric joint (or pair) frequencies $J_{ij} = \pi_i \cdot P_{ij} = \pi_j \cdot P_{ji} = J_{ji}$ (symmetry of J: time-reversibility) $\underset{\text{Algorithmic Bioinformatics}}{\bigoplus}$

Parameter Estimation

Procedure

- Estimate $J = (J_{ij})$ symmetrically by counting pairs of amino acids in alignments. Normalize, such that $\sum_{i,j} J_{ij} = 1$ (probability distribution over pairs), i.e., divide by total number N of observed pairs.
- Obtain π as marginals of J, i.e., $\pi_i = \sum_j J_{ij}$
- Obtain P by normalizing row sums of J to 1.

Parameter Estimation

Procedure

- Estimate $J = (J_{ij})$ symmetrically by counting pairs of amino acids in alignments. Normalize, such that $\sum_{i,j} J_{ij} = 1$ (probability distribution over pairs), i.e., divide by total number N of observed pairs.
- Obtain π as marginals of J, i.e., $\pi_i = \sum_j J_{ij}$
- Obtain P by normalizing row sums of J to 1.

Problem

- Procedure above assumes that all observed alignments have the same divergence time ("one step").
- We will generalize this in a moment; for now, stick with the assumption.

Derivation of Score Matrix

Log-Odds Scores

Compare the observed joint frequencies in real alignments with the expected pair frequencies based on amino acid frequencies:

Quotient or enrichment or odds: $J_{ij}/(\pi_i \cdot \pi_j)$

Derivation of Score Matrix

Log-Odds Scores

Compare the observed joint frequencies in real alignments with the expected pair frequencies based on amino acid frequencies:

Quotient or enrichment or odds: $J_{ij}/(\pi_i \cdot \pi_j)$

Bring to additive scale by taking logarithm (e.g., base 2):

Log-odds score
$$ilde{S}_{ij} = \log_2\left(rac{J_{ij}}{\pi_i\cdot\pi_j}
ight)$$
 [bits]

Derivation of Score Matrix

Log-Odds Scores

Compare the observed joint frequencies in real alignments with the expected pair frequencies based on amino acid frequencies:

Quotient or enrichment or odds: $J_{ij}/(\pi_i \cdot \pi_j)$

Bring to additive scale by taking logarithm (e.g., base 2):

Log-odds score
$$ilde{S}_{ij} = \log_2\left(rac{J_{ij}}{\pi_i\cdot\pi_j}
ight)$$
 [bits]

Scale and round to integer:

$$\mathsf{Score} \quad \mathcal{S}_{ij} = \mathsf{rd}\Big(2\log_2\Big(rac{J_{ij}}{\pi_i\cdot\pi_j}\Big)\Big) \quad [\mathsf{half-bits}]$$

Algorithmic Bioinformatics

Score Matrices of Different Divergence Times

Remember

Amino acid score matrices are rounded scaled log-odds scores, comparing observed joint frequencies with expected pair frequencies from marginals.

Score
$$S_{ij} = \operatorname{rd}\left(3 \log_2\left(\frac{J_{ij}}{\pi_i \cdot \pi_j}\right)\right)$$
 [third-bits]

Score Matrices of Different Divergence Times

Remember

Amino acid score matrices are rounded scaled log-odds scores, comparing observed joint frequencies with expected pair frequencies from marginals.

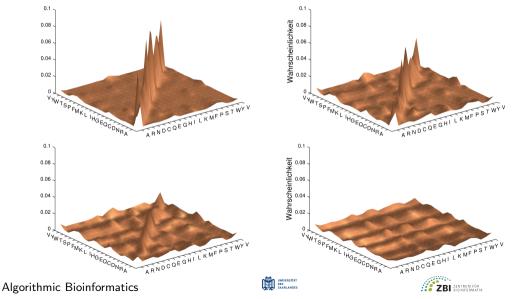
Score
$$S_{ij} = \operatorname{rd}\left(3 \log_2\left(\frac{J_{ij}}{\pi_i \cdot \pi_j}\right)\right)$$
 [third-bits]

11

Problem of Different Divergence Times: J_{ij} are mixed

VCKITPHSSNKSYPDGVYGTSGSANDDKQDAPHYIGTLDMTAFGSLFHEDDFELNFGTAK		#(D, E) = 1 #(N, F) = 0	
KLNELIPTRLDRKGLQSGGKVDRYQDEKYRKVGSPYFKKSHARKLAGSLTSDAITTLVRA : ::::::::::::::::::::::::::::::		#(D, E) = 3 #(N, F) = 1	
PKNDSHTQVKEGTEQTFVLPKAHAASKLVEDLLGAGVDSKPNGAYTQESDPSSVPEGVTD :		#(D,E) = 5 $#(N,F) = 2$	
gorithmic Bioinformatics	IVERSITÄT S ARLANDES		1

Example: Joint Frequencies at Different Divergence Times



Dealing with Different Divergence Times

BLOSUM way: Accept, limit and mix

- Pool confirmed alignments with relatively high identity (e.g., BLOSUM62: at least 62% sequence identity in alignment)
- Mix alignments with identity above threshold to estimate J, P, π , S as above.

Dealing with Different Divergence Times

BLOSUM way: Accept, limit and mix

- Pool confirmed alignments with relatively high identity (e.g., BLOSUM62: at least 62% sequence identity in alignment)
- Mix alignments with identity above threshold to estimate J, P, π , S as above.

PAM way (Dayhoff): Strictly limit, slightly mix, normalize, extrapolate

- Pool confirmed alignments with very high identity (e.g., > 85%)
- Estimate transition probability matrix $P = (P_{ij})$
- Normalize *P* such that the overall amount of change is 1%:

 $\sum_{i \neq j} J_{ij} = \sum_{i} \pi_{i} \sum_{j \neq i} P_{ij} \stackrel{!}{=} 1/100 \text{ (1 PAM} = \text{percent accepted mutations)}$ • Set $P_{ii} := 1 - \sum_{j \neq i} P_{ij}$

Defines a convenient PAM "unit of evolution", extrapolate to longer times.

Algorithmic Bioinformatics

Long-term transition probabilities

- $P = P^{(1)}$: one-step (1 PAM) transition probabilities
- What happens in 120 PAM (time period 120× longer than 1 PAM)?

Long-term transition probabilities

- $P = P^{(1)}$: one-step (1 PAM) transition probabilities
- What happens in 120 PAM (time period $120 \times$ longer than 1 PAM)?
- \blacksquare Not 120% of accepted mutations: Multiple substitutions, back-substitutions: I \to L \to F \to I

Long-term transition probabilities

- $P = P^{(1)}$: one-step (1 PAM) transition probabilities
- What happens in 120 PAM (time period $120 \times$ longer than 1 PAM)?
- \blacksquare Not 120% of accepted mutations: Multiple substitutions, back-substitutions: I \to L \to F \to I

Markov Chain evolution: Chapman-Kolmogorov Equations

• Given $P = P^{(1)}$, what is $P^{(t)}$, or especially $P^{(2)}$?

Long-term transition probabilities

- $P = P^{(1)}$: one-step (1 PAM) transition probabilities
- What happens in 120 PAM (time period $120 \times$ longer than 1 PAM)?
- \blacksquare Not 120% of accepted mutations: Multiple substitutions, back-substitutions: I \to L \to F \to I

Markov Chain evolution: Chapman-Kolmogorov Equations

- Given $P = P^{(1)}$, what is $P^{(t)}$, or especially $P^{(2)}$?
- To move $i \to j$ in 2 PAM, move $i \mapsto k \mapsto j$ for some k: $P_{ij}^{(2)} = \sum_{k} P_{ik}^{(1)} \cdot P_{kj}^{(1)}$ or $P^{(2)} = P^{(1)} \cdot P^{(1)}$.

Long-term transition probabilities

- $P = P^{(1)}$: one-step (1 PAM) transition probabilities
- What happens in 120 PAM (time period $120 \times$ longer than 1 PAM)?
- \blacksquare Not 120% of accepted mutations: Multiple substitutions, back-substitutions: I \to L \to F \to I

Markov Chain evolution: Chapman-Kolmogorov Equations

- Given $P = P^{(1)}$, what is $P^{(t)}$, or especially $P^{(2)}$?
- To move $i \to j$ in 2 PAM, move $i \mapsto k \mapsto j$ for some k: $P_{ij}^{(2)} = \sum_{k} P_{ik}^{(1)} \cdot P_{kj}^{(1)}$ or $P^{(2)} = P^{(1)} \cdot P^{(1)}$.
- In general, $P^{(s+t)} = P^{(s)} \cdot P^{(t)}$ (Chapman-Kolmogorov)
- Therefore, $P^{(t)} = P^t$, the *t*-th power of P ($t \in \mathbb{N}$), and $P^{(0)} = P^0 = \mathsf{Id}$.

Algorithmic Bioinformatics

Dayhoff's Extrapolation Method

PAM Matrix Family

- Remember: $P = P^{(1)}$ was created from mixed closely related alignments, artificially normalized to 1 PAM.
- Now $P^{(120)} = P^{120}$ extrapolates to time span 120 PAM.
- Limits: $P^{(0)} = \text{Id}$ (no change), and $P_{ij}^{(\infty)} = \pi_i \cdot \pi_j$.

Dayhoff's Extrapolation Method

PAM Matrix Family

- Remember: $P = P^{(1)}$ was created from mixed closely related alignments, artificially normalized to 1 PAM.
- Now $P^{(120)} = P^{120}$ extrapolates to time span 120 PAM.
- Limits: $P^{(0)} = \text{Id}$ (no change), and $P_{ij}^{(\infty)} = \pi_i \cdot \pi_j$.

Disadvantages

- The estimation procedure cannot utilize distant alignments.
- Rare replacements are too infrequent to resolve transition probabilities accurately.
- Errors in 1 PAM matrix are magnified in the extrapolation to 120 PAM.

Dayhoff's Extrapolation Method

PAM Matrix Family

- Remember: $P = P^{(1)}$ was created from mixed closely related alignments, artificially normalized to 1 PAM.
- Now $P^{(120)} = P^{120}$ extrapolates to time span 120 PAM.
- Limits: $P^{(0)} = \text{Id}$ (no change), and $P_{ij}^{(\infty)} = \pi_i \cdot \pi_j$.

Disadvantages

- The estimation procedure cannot utilize distant alignments.
- Rare replacements are too infrequent to resolve transition probabilities accurately.
- Errors in 1 PAM matrix are magnified in the extrapolation to 120 PAM.

 \Rightarrow Design method to utilize alignments of varying divergence (Tobias Müller, ca. 2000)

Continuous-Time Markov Processes

Rate matrices

- For real numbers p, we have $p^n = p \cdots p$ (n times). Generalize to real exponents $t \in \mathbb{R}$ by $p^t = \exp(t \cdot \log p)$.
- Can it be done for matrices, too?

Continuous-Time Markov Processes

Rate matrices

- For real numbers p, we have $p^n = p \cdots p$ (n times). Generalize to real exponents $t \in \mathbb{R}$ by $p^t = \exp(t \cdot \log p)$.
- Can it be done for matrices, too?
- Definition: A matrix Q such that exp(Q) = P is called rate matrix or infinitesimal generator of the Markov process, or matrix logarithm.
- Does not exist for every matrix, but does for positive definite matrices.
 Compute by diagonalization and taking logarithm of each (positive) eigenvalue.
- Matrix exponential for square matrices defined by power series

$$\exp(Q) := \mathrm{Id} + Q + Q^2/2 + \cdots + Q^k/k! + \ldots$$

Property:
$$\exp(tQ) \cdot \exp(sQ) = \exp((s+t)Q)$$

Algorithmic Bioinformatics

Understanding the Rate Matrix

Linear approximation for small t > 0

•
$$P^t = \exp(tQ) = \operatorname{Id} + tQ + t^2Q^2/2 + \cdots + t^kQ^k/k! + \cdots \approx \operatorname{Id} + tQ$$

Also,
$$Q = \lim_{t \searrow 0} (P^{(t)} - \operatorname{Id})/t = P'^{(0)}$$

• Therefore, Q contains the rates describing how fast P_{ii}^t changes near t = 0.

Understanding the Rate Matrix

Linear approximation for small t > 0

• $P^t = \exp(tQ) = \operatorname{Id} + tQ + t^2Q^2/2 + \cdots + t^kQ^k/k! + \cdots \approx \operatorname{Id} + tQ$

Also,
$$Q = \lim_{t\searrow 0} (P^{(t)} - \operatorname{Id})/t = P'^{(0)}$$

• Therefore, Q contains the rates describing how fast P_{ii}^t changes near t = 0.

Some Properties

- Valid rate matrix has $Q_{ij} > 0$ for $i \neq j$ and $Q_{ii} < 0$ for all i.
- Zero row sums: $\sum_j \, \mathcal{Q}_{ij} = 0$ or $\mathcal{Q}_{ii} = -\sum_{j
 eq i} \, \mathcal{Q}_{ij} < 0$

Understanding the Rate Matrix

Linear approximation for small t > 0

•
$$P^t = \exp(tQ) = \operatorname{Id} + tQ + t^2Q^2/2 + \cdots + t^kQ^k/k! + \cdots \approx \operatorname{Id} + tQ$$

Also,
$$Q = \lim_{t\searrow 0} (P^{(t)} - \operatorname{Id})/t = P'^{(0)}$$

• Therefore, Q contains the rates describing how fast P_{ii}^t changes near t = 0.

Some Properties

- Valid rate matrix has $Q_{ij} > 0$ for $i \neq j$ and $Q_{ii} < 0$ for all i.
- Zero row sums: $\sum_j \, \mathcal{Q}_{ij} = 0$ or $\mathcal{Q}_{ii} = -\sum_{j
 eq i} \, \mathcal{Q}_{ij} < 0$

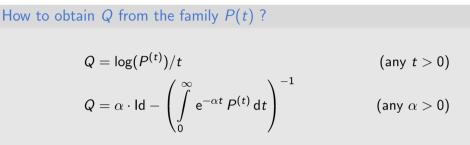
Alternative scaling or calibration

• So far: Scale Q such that $P = \exp(Q)$ has 1 PAM (amount of change)

■ Alternative: Scale Q such that ∑_i π_i ∑_{j≠i} Q_{ij} = 1/100, unit of 1 PEM (percent expected mutation events)

Algorithmic Bioinformatics

Different Expressions for the Rate Matrix



The integral is called the resolvent (or Laplace transform) of $P^{(t)}$, t > 0.

Different Expressions for the Rate Matrix

How to obtain Q from the family P(t)?

$$Q = \log(P^{(t)})/t \qquad (\text{any } t > 0)$$
$$Q = \alpha \cdot \mathsf{Id} - \left(\int_{0}^{\infty} e^{-\alpha t} P^{(t)} \, \mathsf{d}t\right)^{-1} \qquad (\text{any } \alpha > 0)$$

The integral is called the **resolvent** (or Laplace transform) of $P^{(t)}$, t > 0.

Why is the resolvent representation useful?

The resolvent expression integrates (in a weighted manner) over all times t. We can use alignments of different degrees of divergence and adjust weighting via α .

Estimation of Q based on the Resolvent Expression

- **1** Start with an initial rate matrix Q and pairwise alignments (A_i)
- **2** Calculate empirical transition matrix $P_{(i)}$ from A_i for all i
- **3** Estimate divergence time t_i for A_i using existing rates Q
- Combine different P^(t_i) with approximately equal t_i
 (fewer time points, but better P^(t) estimates at each time point t)
- **5** Estimate the resolvent $R_{\alpha} = \int_{0}^{\infty} e^{-\alpha t} P^{(t)} dt \approx \sum_{t} e^{-\alpha t} P^{(t)}$ for different $\alpha > 0$
- 6 Select "best" parameter α^* by Maximum-Likelihood-like procedure
- 7 Set $Q := \alpha^* \cdot \mathsf{Id} R_{\alpha^*}^{-1}$
- 8 Iterate steps 3 7 until Q converges

Estimating the Divergence Time

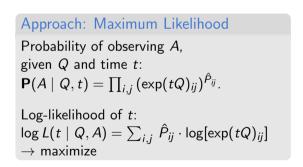
Problem

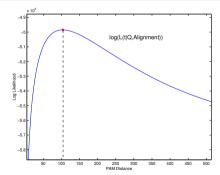
Given alignment A (yielding empirical transition matrix $\hat{P} = \hat{P}^{(t)}$); rate matrix Q, estimate divergence time t, such that $\exp(tQ) \approx \hat{P}$

Estimating the Divergence Time

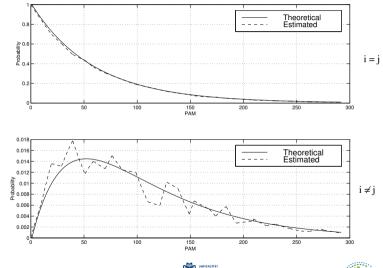
Problem

Given alignment A (yielding empirical transition matrix $\hat{P} = \hat{P}^{(t)}$); rate matrix Q, estimate divergence time t, such that $\exp(tQ) \approx \hat{P}$





Integrating Different $P^{(t)}$ with the Resolvent $\int e^{-\alpha t} P_{ij}^{(t)} dt$



Algorithmic Bioinformatics

Picking Parameter α and Other Details

Interpretation of $\boldsymbol{\alpha}$

- Controls speed of exponential decay of weighting: $\sum_t e^{-\alpha t} P^{(t)}$
- Small α: High weight to large divergence times Large α: Small weight to large divergence times
- Pick α to let $e^{-\alpha t}$ fit amount of alignment data at each time t.
- Can use a maximum-likelihood-like approach or curve fitting

Picking Parameter α and Other Details

Interpretation of $\boldsymbol{\alpha}$

- Controls speed of exponential decay of weighting: $\sum_t e^{-\alpha t} P^{(t)}$
- Small α: High weight to large divergence times Large α: Small weight to large divergence times
- Pick α to let $e^{-\alpha t}$ fit amount of alignment data at each time t.
- Can use a maximum-likelihood-like approach or curve fitting

Starting with an initial Q

- Initially, choose Q such that all rates are equal, calibrate to 1 PEM or or 1 PAM.
- Gives approximate divergence time estimates for first iteration.

Again: Resolvent Estimation of \boldsymbol{Q}

- **1** Start with an initial rate matrix Q and pairwise alignments (A_i)
- **2** Calculate empirical transition matrix $P_{(i)}$ from A_i , for all *i*
- **3** Estimate divergence time t_i for A_i using existing rates Q
- 4 Combine different $P_{(i)}^{(t_i)}$ with approximately equal t_i (fewer time points, but better $P^{(t)}$ estimates at each time point t)
- **5** Estimate the resolvent $R_{\alpha} = \int_{0}^{\infty} e^{-\alpha t} P^{(t)} dt \approx \sum_{t} e^{-\alpha t} P^{(t)}$ for different $\alpha > 0$
- 6 Select "best" parameter α^* by Maximum-Likelihood-like procedure
- 7 Set $Q := \alpha^* \cdot \mathsf{Id} R_{\alpha^*}^{-1}$
- 8 Iterate steps 3 7 until Q converges

Families of Score Matrices

Score matrices have a time parameter t

$$\tilde{S}_{ij}^{(t)} = \log_2 \frac{J_{ij}^{(t)}}{\pi_i \cdot \pi_j} = \log_2 \frac{\pi_i P_{ij}^{(t)}}{\pi_i \cdot \pi_j} = \log_2 \frac{\exp(tQ)_{ij}}{\pi_j} \quad \text{[bits]}$$

PAM family indexed by t (in PAM units), Dayhoff method

- VTML family indexed by t (in PAM units), resolvent method
- BLOSUM family indexed by percent identity (no rate matrix)

Families of Score Matrices

Score matrices have a time parameter t

$$\tilde{S}_{ij}^{(t)} = \log_2 \frac{J_{ij}^{(t)}}{\pi_i \cdot \pi_j} = \log_2 \frac{\pi_i P_{ij}^{(t)}}{\pi_i \cdot \pi_j} = \log_2 \frac{\exp(tQ)_{ij}}{\pi_j} \quad \text{[bits]}$$

- PAM family indexed by t (in PAM units), Dayhoff method
- VTML family indexed by t (in PAM units), resolvent method
- BLOSUM family indexed by percent identity (no rate matrix)

Non-symmetric score matrices?

- So far, score matrices were symmetric, but sequence roles in alignments may differ.
- Search with a transmembrane domain (τ) in a general protein database (π) : may want $\tilde{S}_{ij}^{(t)} = \log_2 \frac{J_{ij}^{(t)}}{\tau_i \cdot \pi_i}$ (e.g., SLIM matrix family, Müller et al., 2001)

Algorithmic Bioinformatics

Summary

Score Matrices

- Joint frequencies J, transition probabilities P, marginal probabilities π
- (Scaled, rounded) Log-odds scores S
- Evolutionary time units: PAM, PEM
- Markov processes, Chapman-Kolmogorov equation $P^{(s+t)} = P^{(s)} \cdot P^{(t)}$
- Rate matrix Q and time-t transition matrices: $P^{(t)} = P^t = \exp(tQ)$
- Resolvent (Laplace transform) method allows estimation of Q from alignments of varying divergence.
- Symmetric general-purpose vs. (perhaps non-symmetric) special-purpose matrices

Possible Exam Questions

- Define joint frequencies J, transition probabilities P, marginal probabilities π .
- Describe how to compute log-odds scores.
- Explain how the BLOSUM and PAM matrix families were constructed.
- What is a rate matrix?
- Define the evolutionary time units 1 PAM and 1 PEM.
- How can Q be expressed in terms of P or all $P^{(t)}$?
- How can you estimate the divergence time of an observed alignment?
- What are the advantages of the resolvent method for estimating Q?
- Are score matrices symmetric? Why? When not?

