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Overview

Previously: Pairwise Sequence Alignment

score maximization with general scoring schemes,

Four variants: global, semiglobal, overlapping, local

Today’s Lecture: Score Matrices

Where do (families of) score matrices (like BLOSUM62) come from?

Evolutionary distances (units PAM, PEM)

Excursion: Time-continuous Markov processes, matrix exponentials

Estimation of score matrices from alignments of different divergence times

General vs. special purpose score matrices
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Score Matrices for Comparing Proteins
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Example: BLOSUM62 Scoring Matrix for Amino Acids
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How Score Matrices are Obtained

Idea: Physically and chemically similar pairs of amino acids have positive score,
dissimilar pairs have negative score. Zero is a neutral value.

However, who is to quantify “similarity”? Experts ?

Instead, use data-driven approach. (Today, you call this machine learning.)

Observe the (relative) frequencies of amino acids in proteins.

Observe the joint frequencies of amino acids in confirmed alignments:
Similar amino acids more often replace each other than dissimilar amino acids.
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Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments
24.7% identity in 97 aa overlap; score: 109

ref IFLHDNAPSHTARAVRDTLETLNWEVLPHAAYSPDLAPSDYHLFASMGHALAEQRFDSYESVKKWLDEWFAAKDDEFYWRGIHKLPERWEKCVASDG

.: .:: :.::. ::. .. ..: . :::: : . ::. . . :. : .. .. . :. . : . : ..:.: . . ..:

query VFQQDNDPKHTSLHVRSWFDRRFVDLLDWPSQSPDLNPIE-HLWEELERRLGGIRASNADAKFNQLPNAWKAIPMSVIHKLIDSMPRRCQAVIDANG

Examples of pair counts

#(D,E ) = 4

#(N,F ) = 1

Assumption (for now)

All alignments used for counting have the same degree of divergence (evolutionary
distance). Otherwise, they are not be comparable.

Algorithmic Bioinformatics 6



Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments
24.7% identity in 97 aa overlap; score: 109

ref IFLHDNAPSHTARAVRDTLETLNWEVLPHAAYSPDLAPSDYHLFASMGHALAEQRFDSYESVKKWLDEWFAAKDDEFYWRGIHKLPERWEKCVASDG

.: .:: :.::. ::. .. ..: . :::: : . ::. . . :. : .. .. . :. . : . : ..:.: . . ..:

query VFQQDNDPKHTSLHVRSWFDRRFVDLLDWPSQSPDLNPIE-HLWEELERRLGGIRASNADAKFNQLPNAWKAIPMSVIHKLIDSMPRRCQAVIDANG

Examples of pair counts

#(D,E ) = 4

#(N,F ) = 1

Assumption (for now)

All alignments used for counting have the same degree of divergence (evolutionary
distance). Otherwise, they are not be comparable.

Algorithmic Bioinformatics 6



Score Matrices from Observed Alignments

Counting amino acid replacements in confirmed alignments
24.7% identity in 97 aa overlap; score: 109

ref IFLHDNAPSHTARAVRDTLETLNWEVLPHAAYSPDLAPSDYHLFASMGHALAEQRFDSYESVKKWLDEWFAAKDDEFYWRGIHKLPERWEKCVASDG

.: .:: :.::. ::. .. ..: . :::: : . ::. . . :. : .. .. . :. . : . : ..:.: . . ..:

query VFQQDNDPKHTSLHVRSWFDRRFVDLLDWPSQSPDLNPIE-HLWEELERRLGGIRASNADAKFNQLPNAWKAIPMSVIHKLIDSMPRRCQAVIDANG

Examples of pair counts

#(D,E ) = 4

#(N,F ) = 1

Assumption (for now)

All alignments used for counting have the same degree of divergence (evolutionary
distance). Otherwise, they are not be comparable.

Algorithmic Bioinformatics 6



Markov Model of Protein Evolution

· · · A S A R D S D · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · D S D A A S D · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · D S D R A S D · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓

· · · A E D A D S D · · ·

Assumptions

Replacement probabilities at any site depend only on the amino acid at that site
and on transition probabilities, but not on the history (past) at that site.

Sequences have average (typical) amino acid composition.

Time-reversible process (direction of time arrow is irrelevant)
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Markov Model of Protein Evolution

Model Parameters

Amino acid frequencies π = (πi )
20
i=1 (row vector)

Conditional transition probabilities for a fixed time unit (“1 step”):

P = (Pij) (i = 1, . . . , 20, j = 1, . . . , 20)

with
∑20

j=1 Pij = 1 for all i (rows sum to 1).

One step of transitions must not change overall frequencies,
i.e., π must be the/a stationary distribution for P:

20∑
i=1

πi · Pij = πj or π · P = π .

Symmetric joint (or pair) frequencies Jij = πi · Pij = πj · Pji = Jji
(symmetry of J: time-reversibility)
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Parameter Estimation

Procedure

Estimate J = (Jij) symmetrically by counting pairs of amino acids in alignments.
Normalize, such that

∑
i ,j Jij = 1 (probability distribution over pairs), i.e., divide

by total number N of observed pairs.

Obtain π as marginals of J, i.e., πi =
∑

j Jij

Obtain P by normalizing row sums of J to 1.

Problem

Procedure above assumes that all observed alignments
have the same divergence time (“one step”).

We will generalize this in a moment; for now, stick with the assumption.
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Derivation of Score Matrix

Log-Odds Scores

Compare the observed joint frequencies in real alignments
with the expected pair frequencies based on amino acid frequencies:

Quotient or enrichment or odds: Jij/(πi · πj)

Bring to additive scale by taking logarithm (e.g., base 2):

Log-odds score S̃ij = log2

( Jij
πi · πj

)
[bits]

Scale and round to integer:

Score Sij = rd
(

2 log2

( Jij
πi · πj

))
[half-bits]
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Score Matrices of Different Divergence Times

Remember

Amino acid score matrices are rounded scaled log-odds scores,
comparing observed joint frequencies with expected pair frequencies from marginals.

Score Sij = rd
(

3 log2

( Jij
πi · πj

))
[third-bits]

Problem of Different Divergence Times: Jij are mixed
VCKITPHSSNKSYPDGVYGTSGSANDDKQDAPHYIGTLDMTAFGSLFHEDDFELNFGTAK ...

:::::::. .::.::::::: :::: .:::::.:::::::::::::::::.:::.:::.:

VCKITPHAPHKSHPDGVYGTPGSANADRQDAPNYIGTLDMTAFGSLFHEDEFELTFGTTK ...

#(D,E) = 1

#(N,F ) = 0

KLNELIPTRLDRKGLQSGGKVDRYQDEKYRKVGSPYFKKSHARKLAGSLTSDAITTLVRA ...

....: ::.: :::::::. :: . . : : :..: : :. :.:: ::..

RVSDLYGIRLERAGLQSGGKLARYVEASLTTHGLAYNMASRTRLLQGAHTGDASDGLVKT ...

#(D,E) = 3

#(N,F ) = 1

PKNDSHTQVKEGTEQTFVLPKAHAASKLVEDLLGAGVDSKPNGAYTQESDPSSVPEGVTD ...

:. .. : :.:. . : . ::. .. . : .:..: : ...:: . .:. .

PQFEGFTTGKDGAPLAAVQKQYHATVMFIVMMGGFAVEQKGFGFRGSDKDPCHTSHGLLE ...

#(D,E) = 5

#(N,F ) = 2
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Example: Joint Frequencies at Different Divergence Times
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Dealing with Different Divergence Times

BLOSUM way: Accept, limit and mix

Pool confirmed alignments with relatively high identity
(e.g., BLOSUM62: at least 62% sequence identity in alignment)

Mix alignments with identity above threshold to estimate J, P, π, S as above.

PAM way (Dayhoff): Strictly limit, slightly mix, normalize, extrapolate

Pool confirmed alignments with very high identity (e.g., > 85%)

Estimate transition probability matrix P = (Pij)

Normalize P such that the overall amount of change is 1%:∑
i 6=j Jij =

∑
i πi

∑
j 6=i Pij

!
= 1/100 (1 PAM = percent accepted mutations)

Set Pii := 1−
∑

j 6=i Pij

Defines a convenient PAM “unit of evolution”, extrapolate to longer times.
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More on Markov Processes

Long-term transition probabilities

P = P(1): one-step (1 PAM) transition probabilities

What happens in 120 PAM (time period 120× longer than 1 PAM)?

Not 120% of accepted mutations:
Multiple substitutions, back-substitutions: I → L → F → I

Markov Chain evolution: Chapman-Kolmogorov Equations

Given P = P(1), what is P(t), or especially P(2) ?

To move i → j in 2 PAM, move i 7→ k 7→ j for some k :

P
(2)
ij =

∑
k P

(1)
ik · P

(1)
kj or P(2) = P(1) · P(1).

In general, P(s+t) = P(s) · P(t) (Chapman-Kolmogorov)

Therefore, P(t) = Pt , the t-th power of P (t ∈ N), and P(0) = P0 = Id.
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Dayhoff’s Extrapolation Method

PAM Matrix Family

Remember: P = P(1) was created from mixed closely related alignments,
artificially normalized to 1 PAM.

Now P(120) = P120 extrapolates to time span 120 PAM.

Limits: P(0) = Id (no change), and P
(∞)
ij = πi · πj .

Disadvantages

The estimation procedure cannot utilize distant alignments.

Rare replacements are too infrequent to resolve transition probabilities accurately.

Errors in 1 PAM matrix are magnified in the extrapolation to 120 PAM.

⇒ Design method to utilize alignments of varying divergence (Tobias Müller, ca. 2000)
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Continuous-Time Markov Processes

Rate matrices

For real numbers p, we have pn = p · · · · · p (n times).
Generalize to real exponents t ∈ R by pt = exp(t · log p).

Can it be done for matrices, too?

Definition: A matrix Q such that exp(Q) = P is called rate matrix
or infinitesimal generator of the Markov process, or matrix logarithm.

Does not exist for every matrix, but does for positive definite matrices.
Compute by diagonalization and taking logarithm of each (positive) eigenvalue.

Matrix exponential for square matrices defined by power series

exp(Q) := Id + Q + Q2/2 + · · ·+ Qk/k! + . . .

Property: exp(tQ) · exp(sQ) = exp((s + t)Q)
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Understanding the Rate Matrix

Linear approximation for small t > 0

Pt = exp(tQ) = Id + tQ + t2Q2/2 + · · ·+ tkQk/k! + · · · ≈ Id + tQ

Also, Q = limt↘0 (P(t) − Id)/t = P ′(0)

Therefore, Q contains the rates describing how fast Pt
ij changes near t = 0.

Some Properties

Valid rate matrix has Qij > 0 for i 6= j and Qii < 0 for all i .

Zero row sums:
∑

j Qij = 0 or Qii = −
∑

j 6=i Qij < 0

Alternative scaling or calibration

So far: Scale Q such that P = exp(Q) has 1 PAM (amount of change)

Alternative: Scale Q such that
∑

i πi
∑

j 6=i Qij = 1/100,
unit of 1 PEM (percent expected mutation events)
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Different Expressions for the Rate Matrix

How to obtain Q from the family P(t) ?

Q = log(P(t))/t (any t > 0)

Q = α · Id−

 ∞∫
0

e−αt P(t) dt

−1 (any α > 0)

The integral is called the resolvent (or Laplace transform) of P(t), t > 0.

Why is the resolvent representation useful?

The resolvent expression integrates (in a weighted manner) over all times t.
We can use alignments of different degrees of divergence and adjust weighting via α.
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Estimation of Q based on the Resolvent Expression

1 Start with an initial rate matrix Q and pairwise alignments (Ai )

2 Calculate empirical transition matrix P(i) from Ai for all i

3 Estimate divergence time ti for Ai using existing rates Q

4 Combine different P
(ti )
(i) with approximately equal ti

(fewer time points, but better P(t) estimates at each time point t)

5 Estimate the resolvent Rα =
∫∞
0 e−αt P(t) dt ≈

∑
t e−αt P(t)

for different α > 0

6 Select “best” parameter α∗ by Maximum-Likelihood-like procedure

7 Set Q := α∗ · Id− R−1α∗

8 Iterate steps 3 – 7 until Q converges
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Estimating the Divergence Time

Problem

Given alignment A (yielding empirical transition matrix P̂ = P̂(t)); rate matrix Q,
estimate divergence time t, such that exp(tQ) ≈ P̂

Approach: Maximum Likelihood

Probability of observing A,
given Q and time t:

P(A | Q, t) =
∏

i ,j (exp(tQ)ij)
P̂ij .

Log-likelihood of t:
log L(t | Q,A) =

∑
i ,j P̂ij · log[exp(tQ)ij ]

→ maximize
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Integrating Different P (t) with the Resolvent
∫

e−αt P
(t)
ij dt
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Picking Parameter α and Other Details

Interpretation of α

Controls speed of exponential decay of weighting:
∑

t e−αt P(t)

Small α: High weight to large divergence times
Large α: Small weight to large divergence times

Pick α to let e−αt fit amount of alignment data at each time t.

Can use a maximum-likelihood-like approach or curve fitting

Starting with an initial Q

Initially, choose Q such that all rates are equal,
calibrate to 1 PEM or or 1 PAM.

Gives approximate divergence time estimates for first iteration.
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Again: Resolvent Estimation of Q

1 Start with an initial rate matrix Q and pairwise alignments (Ai )

2 Calculate empirical transition matrix P(i) from Ai , for all i

3 Estimate divergence time ti for Ai using existing rates Q

4 Combine different P
(ti )
(i) with approximately equal ti

(fewer time points, but better P(t) estimates at each time point t)

5 Estimate the resolvent Rα =
∫∞
0 e−αt P(t) dt ≈

∑
t e−αt P(t)

for different α > 0

6 Select “best” parameter α∗ by Maximum-Likelihood-like procedure

7 Set Q := α∗ · Id− R−1α∗

8 Iterate steps 3 – 7 until Q converges
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Families of Score Matrices

Score matrices have a time parameter t

S̃
(t)
ij = log2

J
(t)
ij

πi · πj
= log2

πiP
(t)
ij

πi · πj
= log2

exp(tQ)ij
πj

[bits]

PAM family indexed by t (in PAM units), Dayhoff method

VTML family indexed by t (in PAM units), resolvent method

BLOSUM family indexed by percent identity (no rate matrix)

Non-symmetric score matrices?

So far, score matrices were symmetric, but sequence roles in alignments may differ.

Search with a transmembrane domain (τ) in a general protein database (π):

may want S̃
(t)
ij = log2

J
(t)
ij

τi ·πj (e.g., SLIM matrix family, Müller et al., 2001)
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Summary

Score Matrices

Joint frequencies J, transition probabilities P, marginal probabilities π

(Scaled, rounded) Log-odds scores S

Evolutionary time units: PAM, PEM

Markov processes, Chapman-Kolmogorov equation P(s+t) = P(s) · P(t)

Rate matrix Q and time-t transition matrices: P(t) = Pt = exp(tQ)

Resolvent (Laplace transform) method allows estimation of Q
from alignments of varying divergence.

Symmetric general-purpose vs. (perhaps non-symmetric) special-purpose matrices

Algorithmic Bioinformatics 25



Possible Exam Questions

Define joint frequencies J, transition probabilities P, marginal probabilities π.

Describe how to compute log-odds scores.

Explain how the BLOSUM and PAM matrix families were constructed.

What is a rate matrix?

Define the evolutionary time units 1 PAM and 1 PEM.

How can Q be expressed in terms of P or all P(t)?

How can you estimate the divergence time of an observed alignment?

What are the advantages of the resolvent method for estimating Q?

Are score matrices symmetric? Why? When not?
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