
Pairwise Sequence Alignments
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021



Overview

Previous Lectures

Distance and similarity measures between two sequences

Error-tolerant pattern search (edit distance) in a text:
Algorithms: Basic DP, Ukkonen, Myers, NFA-Shift-And, NFA-FM, Four Russians.

Alignments as visualization of edit process (global, semiglobal)

Today

From costs (distances) to scores (similarities)

General scoring schemes

More general introduction of alignments

Four variants of alignments:
(1) global, (2) semiglobal (pattern search),
(3) free end gaps (overlap detection), (4) local (regions of similarity)

Algorithmic Bioinformatics 2



Overview

Previous Lectures

Distance and similarity measures between two sequences

Error-tolerant pattern search (edit distance) in a text:
Algorithms: Basic DP, Ukkonen, Myers, NFA-Shift-And, NFA-FM, Four Russians.

Alignments as visualization of edit process (global, semiglobal)

Today

From costs (distances) to scores (similarities)

General scoring schemes

More general introduction of alignments

Four variants of alignments:
(1) global, (2) semiglobal (pattern search),
(3) free end gaps (overlap detection), (4) local (regions of similarity)

Algorithmic Bioinformatics 2



Scoring Schemes for Pairwise Sequence Comparison

Need for fine-grained similarity

Comparison of biosequences (esp. protein sequences) needs a fine-grained notion
of similarity instead of only “equal” vs. “not equal” amino acids.

Example: Leucine (L) and Isoleucine (I) are physically and chemically similar.
Tryptophan (W) has very different properties than most other amino acids.

Change of paradigm: Zero-centered similarity

Evaluate similarity (positive and negative) instead of distances (non-negative)

Value of 0 means “neutral”, positive means “similar”, negative means ”dissimilar”.

Therefore: Use a general score matrix s = s(a, b) for any a, b ∈ Σ,
and (negative) similarity values (gap scores) for insertions and deletions.

Algorithmic Bioinformatics 3



Scoring Schemes for Pairwise Sequence Comparison

Need for fine-grained similarity

Comparison of biosequences (esp. protein sequences) needs a fine-grained notion
of similarity instead of only “equal” vs. “not equal” amino acids.

Example: Leucine (L) and Isoleucine (I) are physically and chemically similar.
Tryptophan (W) has very different properties than most other amino acids.

Change of paradigm: Zero-centered similarity

Evaluate similarity (positive and negative) instead of distances (non-negative)

Value of 0 means “neutral”, positive means “similar”, negative means ”dissimilar”.

Therefore: Use a general score matrix s = s(a, b) for any a, b ∈ Σ,
and (negative) similarity values (gap scores) for insertions and deletions.

Algorithmic Bioinformatics 3



Scoring Schemes for Pairwise Sequence Comparison

Need for fine-grained similarity

Comparison of biosequences (esp. protein sequences) needs a fine-grained notion
of similarity instead of only “equal” vs. “not equal” amino acids.

Example: Leucine (L) and Isoleucine (I) are physically and chemically similar.
Tryptophan (W) has very different properties than most other amino acids.

Change of paradigm: Zero-centered similarity

Evaluate similarity (positive and negative) instead of distances (non-negative)

Value of 0 means “neutral”, positive means “similar”, negative means ”dissimilar”.

Therefore: Use a general score matrix s = s(a, b) for any a, b ∈ Σ,
and (negative) similarity values (gap scores) for insertions and deletions.

Algorithmic Bioinformatics 3



Example: BLOSUM62 Scoring Matrix for Amino Acids

Algorithmic Bioinformatics 4



Example: BLOSUM62 Scoring Matrix for Amino Acids

Algorithmic Bioinformatics 4



Reminder: Alignments

Definition (Alignment, Projections π1, π2)

An alignment is a string A over the alignment alphabet (Σ ∪ {−})2 \ {(−,−)}
(pairs of characters, or one character paired with a gap).
The first (second) projection π1 (π2) reads the first (second) elements without gaps,
so π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε, etc.

Definition (Global alignment)

A global alignment between s, t ∈ Σ∗ is an alignment with π1(A) = s, π2(A) = t.

Definition (Semiglobal alignment)

A semiglobal alignment between P,T ∈ Σ∗ is an alignment
with π1(A) = P, π2(A) = T ′, where T ′ is any substring of T .

Algorithmic Bioinformatics 5



Reminder: Alignments

Definition (Alignment, Projections π1, π2)

An alignment is a string A over the alignment alphabet (Σ ∪ {−})2 \ {(−,−)}
(pairs of characters, or one character paired with a gap).
The first (second) projection π1 (π2) reads the first (second) elements without gaps,
so π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε, etc.

Definition (Global alignment)

A global alignment between s, t ∈ Σ∗ is an alignment with π1(A) = s, π2(A) = t.

Definition (Semiglobal alignment)

A semiglobal alignment between P,T ∈ Σ∗ is an alignment
with π1(A) = P, π2(A) = T ′, where T ′ is any substring of T .

Algorithmic Bioinformatics 5



Reminder: Alignments

Definition (Alignment, Projections π1, π2)

An alignment is a string A over the alignment alphabet (Σ ∪ {−})2 \ {(−,−)}
(pairs of characters, or one character paired with a gap).
The first (second) projection π1 (π2) reads the first (second) elements without gaps,
so π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε, etc.

Definition (Global alignment)

A global alignment between s, t ∈ Σ∗ is an alignment with π1(A) = s, π2(A) = t.

Definition (Semiglobal alignment)

A semiglobal alignment between P,T ∈ Σ∗ is an alignment
with π1(A) = P, π2(A) = T ′, where T ′ is any substring of T .

Algorithmic Bioinformatics 5



Universal Alignment Algorithm

Given

Sequences s, t

Scoring scheme

Alignment graph topology (e.g., for global or semiglobal alignment)

Algorithmic Bioinformatics 6



Universal Alignment Algorithm

Given: sequences s, t, scoring scheme, graph topology

Sought:
Maximum score among all paths v◦ → v• (optimal alignment score)
A path that maximizes the scores (optimal alignment)

Let S(v) be the maximal score of all paths v◦ → v , and S(v◦) := 0.

Let T (v) be the predecessor of v , from which the maximum S(v) is obtained.

For v 6= v◦: S(v) = max
w :w→v∈E

{S(w) + score(w → v)},

T (v) = arg max
w :w→v∈E

{S(w) + score(w → v)}.

Compute nodes in topological order (graph is acyclic!)

The optimal score is obtained as S(v•).

The optimal path (alignment) is obtained by traceback from v•:
v• → T (v•)→ T (T (v•))→ · · · → T k(v•)→ · · · → v◦.

Algorithmic Bioinformatics 7



Universal Alignment Algorithm

Given: sequences s, t, scoring scheme, graph topology

Sought:
Maximum score among all paths v◦ → v• (optimal alignment score)
A path that maximizes the scores (optimal alignment)

Let S(v) be the maximal score of all paths v◦ → v , and S(v◦) := 0.

Let T (v) be the predecessor of v , from which the maximum S(v) is obtained.

For v 6= v◦: S(v) = max
w :w→v∈E

{S(w) + score(w → v)},

T (v) = arg max
w :w→v∈E

{S(w) + score(w → v)}.

Compute nodes in topological order (graph is acyclic!)

The optimal score is obtained as S(v•).

The optimal path (alignment) is obtained by traceback from v•:
v• → T (v•)→ T (T (v•))→ · · · → T k(v•)→ · · · → v◦.

Algorithmic Bioinformatics 7



Traceback

Traceback, also Backtracing

Reconstruction of the optimal path by tracing back the predecessor nodes
that lead to the optimal score value in each node

Do not confuse with Backtracking!

Optimal path and alignment

Optimal path is reconstructed backwards, can be flipped when done

Optimal alignment:
Read off the edge labels along the optimal path

Time and memory requirements

Running time: O(m + n) for an m × n matrix (maximum length of a path)

Memory: O(mn) because the full matrix T must be stored (improvement soon)

Algorithmic Bioinformatics 8



Traceback

Traceback, also Backtracing

Reconstruction of the optimal path by tracing back the predecessor nodes
that lead to the optimal score value in each node

Do not confuse with Backtracking!

Optimal path and alignment

Optimal path is reconstructed backwards, can be flipped when done

Optimal alignment:
Read off the edge labels along the optimal path

Time and memory requirements

Running time: O(m + n) for an m × n matrix (maximum length of a path)

Memory: O(mn) because the full matrix T must be stored (improvement soon)

Algorithmic Bioinformatics 8



Traceback

Traceback, also Backtracing

Reconstruction of the optimal path by tracing back the predecessor nodes
that lead to the optimal score value in each node

Do not confuse with Backtracking!

Optimal path and alignment

Optimal path is reconstructed backwards, can be flipped when done

Optimal alignment:
Read off the edge labels along the optimal path

Time and memory requirements

Running time: O(m + n) for an m × n matrix (maximum length of a path)

Memory: O(mn) because the full matrix T must be stored (improvement soon)

Algorithmic Bioinformatics 8



Variants of Alignments

Four Variants

1 Global alignment (similarity of full sequences)

2 Semiglobal alignment (pattern search)

3 Free end gaps alignment (good/optimal overlap)

4 local alignment (region[s] of high/optimal similarity)

In the following, we discuss the associated graph topology for each variant.
All variants can be handled uniformly with the universal alignment algorithm.

Algorithmic Bioinformatics 9



Global Alignment

Algorithmic Bioinformatics 10



Global Alignment

Definition (global alignment graph)

Nodes V := {(i , j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {v◦, v•}
Edges:

Edge label score
horizontal (i , j)→ (i , j + 1)

[
-
tj

]
< 0 (*)

vertical (i , j)→ (i + 1, j)
[si
-

]
< 0 (*)

diagonal (i , j)→ (i + 1, j + 1)
[si
tj

]
beliebig (*)

Initialization v◦ → (0, 0) ε 0
Finalization (m, n)→ v• ε 0

(*): Meaningful scoring schemes have negative scores for gaps and most substitutions,
and positive scores for identities.

Algorithmic Bioinformatics 11



Semiglobal Alignment (Pattern Search)

Additional initialization edges v◦ → (0, j) and finalization edges (m, j)→ v•:

Algorithmic Bioinformatics 12



“Free End Gaps” Alignment (Overlap Detection)

Question

(How) Do two sequences overlap?

Gaps (overhangs) at either border of either sequence shall not be penalized.

Graph construction

Additional initialization edges v◦ → (i , 0) and v◦ → (0, j),
and finalization edges (i , n)→ v• and (m, j)→ v•.
(All such edges have empty labels and contribute score 0.)

Algorithmic Bioinformatics 13



“Free End Gaps” Alignment (Overlap Detection)

Question

(How) Do two sequences overlap?

Gaps (overhangs) at either border of either sequence shall not be penalized.

Graph construction

Additional initialization edges v◦ → (i , 0) and v◦ → (0, j),
and finalization edges (i , n)→ v• and (m, j)→ v•.
(All such edges have empty labels and contribute score 0.)

Algorithmic Bioinformatics 13



“Free End Gaps” Alignment (Overlap Detection)

Algorithmic Bioinformatics 14



Local Alignment

Question

(Where) Are there regions (substrings) of high similarity between two sequences?

Where are the most similar substrings (maximal score) ?

Formally: Find alignment with maximal score among all substrings s ′ of s and t ′

of t.

Graph construction

Initialization edges v◦ → (i , j) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n,

Finalization edges (i , j)→ v• for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Visualization is not helpful (far too many edges)

Algorithmic Bioinformatics 15



Local Alignment

Question

(Where) Are there regions (substrings) of high similarity between two sequences?

Where are the most similar substrings (maximal score) ?

Formally: Find alignment with maximal score among all substrings s ′ of s and t ′

of t.

Graph construction

Initialization edges v◦ → (i , j) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n,

Finalization edges (i , j)→ v• for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Visualization is not helpful (far too many edges)

Algorithmic Bioinformatics 15



Variants and Distances vs. Scores

Meaningful combinations

Variant Distances Scores
Global alignment (similarity of full sequences) X X
Semiglobal alignment (pattern search) X X
Free end gap alignment (good/optimal overlap) X
Local alignment (region[s] of high/optimal similarity) X

Why?

Optimal distance is always zero (d ≥ 0).
Free end gap and local alignments allow trivial “empty” alignments,
which always have distance zero. No incentive for non-trivial alignments.

Algorithmic Bioinformatics 16



Variants and Distances vs. Scores

Meaningful combinations

Variant Distances Scores
Global alignment (similarity of full sequences) X X
Semiglobal alignment (pattern search) X X
Free end gap alignment (good/optimal overlap) X
Local alignment (region[s] of high/optimal similarity) X

Why?

Optimal distance is always zero (d ≥ 0).
Free end gap and local alignments allow trivial “empty” alignments,
which always have distance zero. No incentive for non-trivial alignments.

Algorithmic Bioinformatics 16



Specialization of Algorithms

For each alignment variant (graph topology):

What is the interpretation of the score S(v) for any v = (i , j)?
(“Score of an optimal alignment of . . . ”)

How does the universal algorithm specialize to matrix form ?
First row and column ?
S [i , j ] = max{. . . } ?
Collection of interesting results or optimal result ?

How do running time and memory requirements change vs. global alignment?
(They don’t.)

Algorithm Names

Global alignment: Needleman-Wunsch algorithm (NW)

Local alignment: Smith-Waterman alignment (SW)

Algorithmic Bioinformatics 17



Specialization of Algorithms

For each alignment variant (graph topology):

What is the interpretation of the score S(v) for any v = (i , j)?
(“Score of an optimal alignment of . . . ”)

How does the universal algorithm specialize to matrix form ?
First row and column ?
S [i , j ] = max{. . . } ?
Collection of interesting results or optimal result ?

How do running time and memory requirements change vs. global alignment?
(They don’t.)

Algorithm Names

Global alignment: Needleman-Wunsch algorithm (NW)

Local alignment: Smith-Waterman alignment (SW)

Algorithmic Bioinformatics 17



Needleman-Wunsch Algorithm (Score-Based, Global, Full Matrix)

1 def needleman_wunsch(s, t, score):

2 m, n, gapscore = len(s), len(t), score(None)

3 S = np.zeros ((m+1, n+1), dtype=np.int32) # scores

4 T = np.zeros ((m+1, n+1), dtype=np.uint8) # traceback

5 S[0,:] = np.arange(n+1, dtype=S.dtype) * gapscore

6 S[:,0] = np.arange(m+1, dtype=S.dtype) * gapscore

7 T[0,0] = HOME; T[0 ,1:] = HORIZONTAL; T[1:,0] = VERTICAL

8 for i, si in zip(count(1), s): # (row , character in s)

9 for j, tj in zip(count(1), t): # (col , character in t)

10 d = S[i-1, j-1] + score(si, tj)

11 h = S[i, j-1] + gapscore

12 v = S[i-1, j] + gapscore

13 S[i,j] = opt = max(d, h, v)

14 T[i,j] = (d==opt)* DIAGONAL + (h==opt)* HORIZONTAL \

15 + (v==opt)* VERTICAL

16 return S[m,n], traceback(m, n, T, s, t)

Algorithmic Bioinformatics 18



Smith-Waterman Algorithm (Score-Based, Local, Full Matrix)
1 def smith_waterman(s, t, score):

2 m, n, gapscore = len(s), len(t), score(None)

3 S = np.zeros ((m+1, n+1), dtype=np.int32) # scores

4 T = np.zeros ((m+1, n+1), dtype=np.uint8) # traceback

5 T[0,:] = HOME; T[:,0] = HOME # alignments end at border

6 best = (-1, -1, -1) # best (S, i, j)

7 for i, si in zip(count(1), s): # (row , character in s)

8 for j, tj in zip(count(1), t): # (col , character in t)

9 d = S[i-1, j-1] + score(si, tj)

10 h = S[i, j-1] + gapscore

11 v = S[i-1, j] + gapscore

12 S[i,j] = opt = max(0, d, h, v) # note additional 0

13 T[i,j] = (d==opt)* DIAGONAL + (h==opt)* HORIZONTAL \

14 + (v==opt)* VERTICAL # can be HOME otherwise

15 if S[i,j] > best [0]: best = (S[i,j], i, j)

16 result , i, j = best

17 return result , traceback(i, j, T, s, t)

Algorithmic Bioinformatics 19



Implementation of Traceback
1 HOME , DIAGONAL , HORIZONTAL , VERTICAL = 0, 1, 2, 4

2 def traceback(i, j, T, s, t, *, GAP=’-’):

3 # We reconstruct the alignment by traceback (T) from i, j

4 As, At = [], [] # rows of alignment: As (for s), At (for t)

5 while T[i,j] != HOME:

6 trace = T[i,j]

7 if (trace & DIAGONAL ):

8 i -= 1; As.append(s[i])

9 j -= 1; At.append(t[j])

10 elif (trace & HORIZONTAL ):

11 As.append(GAP)

12 j -= 1; At.append(t[j])

13 elif (trace & VERTICAL ):

14 i -= 1; As.append(s[i])

15 At.append(GAP)

16 # create the final alignment (pair of strings)

17 return ("".join(As[::-1]), "".join(At[:: -1]))

Algorithmic Bioinformatics 20



Summary

Motivation of scoring schemes vs. cost functions

Definition of pairwise alignments in general

Definition of four pairwise sequence alignment variants

Alignment graphs and four topology variants

Universal alignment algorithm on graphs

Universal traceback

Specialization: Needleman-Wunsch (global)

Specialization: Smith-Waterman (local)

Other specialzations: Homework

Algorithmic Bioinformatics 21



Possible Exam Questions

Define alignment (in general).

Define global / semiglobal / etc. alignment of two strings s, t.

Explain four variants of alignments and their applications / use cases.

What is the difference between score and cost function and why is it important?

Why can’t we use costs for free end gap and local alignment?

How can sequence alignment be formulated as a graph problem?

Show the alignment graph topology for each variant.

Explain the universal alignment algorithm on the alignment graph.

Give the DP formulation for computing an alignment score (any variant).

Compute an optimal alignment (any variant) for two given strings.

Explain traceback.

Algorithmic Bioinformatics 22


