

Error Tolerant Pattern Matching II

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previous Lecture

- Pattern Matching with respect to edit distance
- Semiglobal Alignment:

Compare one full string (pattern) against substrings of a longer string (text)

- Basic algorithm
- Ukkonen's speed-up
- Ideas of Myers' bit vector algorithm

Overview

Previous Lecture

- Pattern Matching with respect to edit distance
- Semiglobal Alignment:

Compare one full string (pattern) against substrings of a longer string (text)

- Basic algorithm
- Ukkonen's speed-up
- Ideas of Myers' bit vector algorithm

Today's Lecture

- Adapting NFAs (and Shift-And) to error tolerant search
- Combining NFAs and full text indexing (FM index)
- Four Russians' Method

Reminder: Error Tolerant Pattern Matching

Problem Definition

- For two strings $P, T \in \Sigma^*$, find approximate occurrences of P in T.
- Formally: Find intervals [*i*, *j*] of *T* such that the edit distance between *P* and *T*[*i*...*j*] is below a given threshold *k*.

Variants

- Decision Problem: Is there an interval ... ?
- **Counting Problem:** How many intervals ... ?
- **Enumeration Problem:** List all intervals
- Optimization Problem: Find an interval [i, j] with the smallest edit distance between P and T[i...j] among all (no threshold k given).

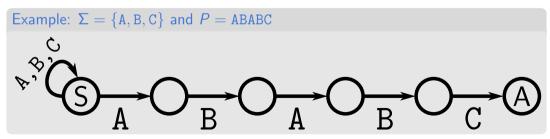
Reminder: NFA for the Exact Pattern Matching Problem

Goal

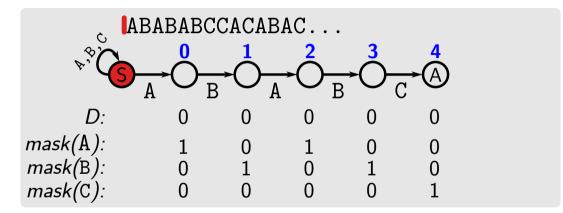
For given pattern $P \in \Sigma^*$, construct NFA that recognizes all strings $\Sigma^* P$.

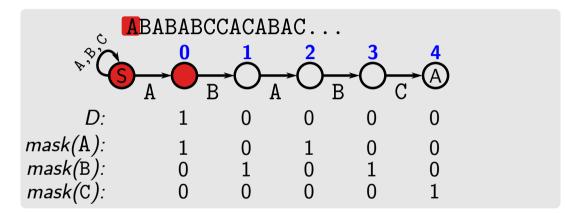
Approach

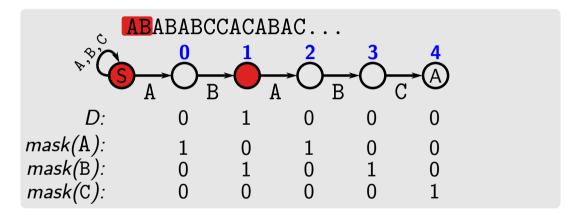
- "Linear chain" of states
- Start state remains always active

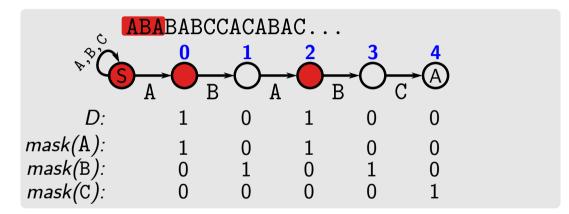


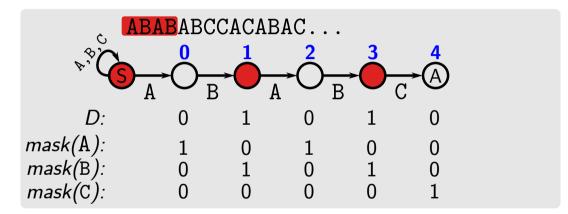
Algorithmic Bioinformatics

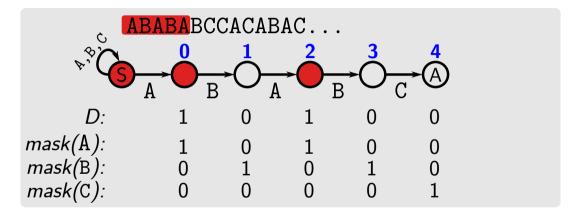


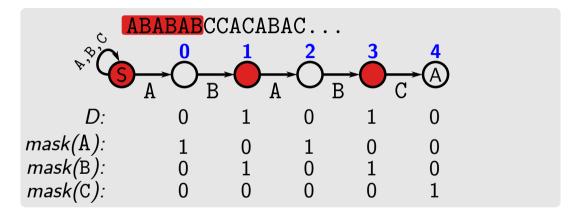


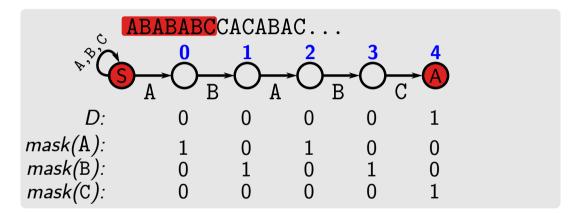












 $D \leftarrow ((D \ll 1)|1)$ & mask[c]

Extension to Error Tolerant Pattern Search

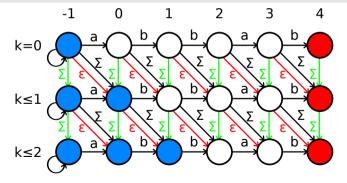
Idea

- Start from NFA for exact pattern search
- Add k additional "rows" account for up to k errors
- State space: $Q = \{0, \dots, k\} \times \{-1, \dots, m-1\}$ for pattern P with |P| = m.

Extension to Error Tolerant Pattern Search

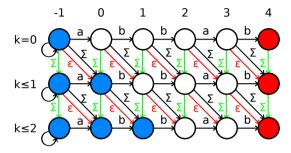
Idea

- Start from NFA for exact pattern search
- Add k additional "rows" account for up to k errors
- State space: $Q = \{0, \dots, k\} \times \{-1, \dots, m-1\}$ for pattern P with |P| = m.



Algorithmic Bioinformatics

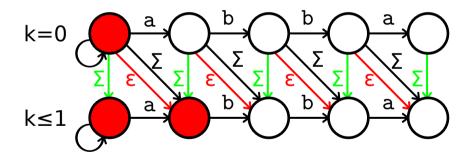
Extension to Error Tolerant Pattern Search

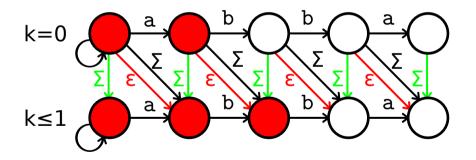


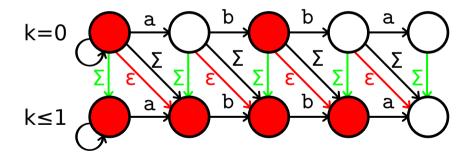
- NFA for P = abbab with edit distance up to 2 and $\Sigma = \{a, b\}$
- blue states: start states, red states: accepting states
- green vertical edges: insertions in P
- red diagonal edges: ε edges for deletions in P
- black diagonal edges: Σ edges for mismatches in P

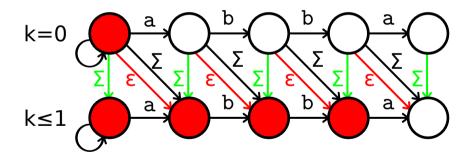
Algorithmic Bioinformatics

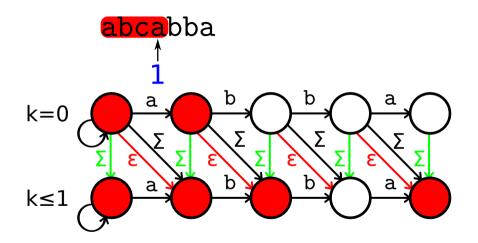
abcabba

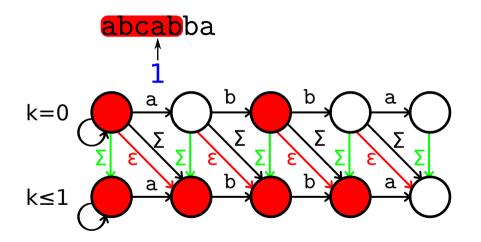


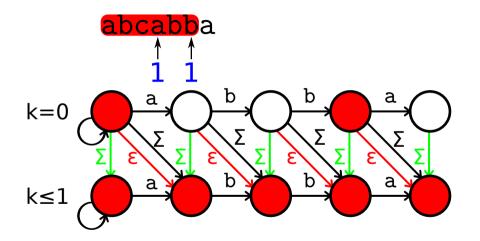


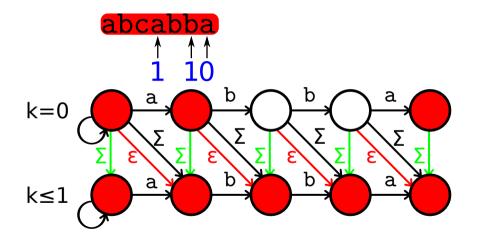




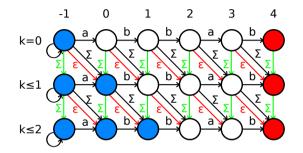


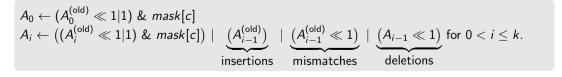






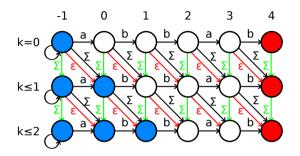
Bit-Parallel Implementation





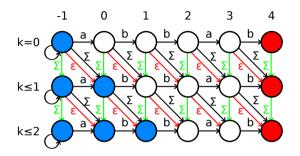
Algorithmic Bioinformatics

Observations



- As usual, only practical for $|P| = m \le 64$
- Needs a loop from 0 to k: only efficient for small k.
- Flexible: use generalized strings, gaps of bounded length, optional characters...

Observations

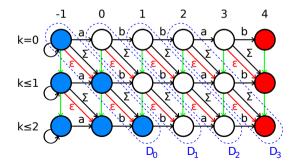


- As usual, only practical for $|P| = m \le 64$
- Needs a loop from 0 to k: only efficient for small k.
- Flexible: use generalized strings, gaps of bounded length, optional characters...
- One more trick: Remove loop over k for small patterns, less flexible

Algorithmic Bioinformatics

Diagonal Encoding

- Instead of encoding the rows of the NFA, encode the **diagonals** in **one** bit vector.
- All states in diagonals together plus separator bits must fit into 64 bits.
- Can do update in time independent of k then (no loop).
- Loss of flexibility; details omitted here.



Error Tolerant Backward Search

Error Tolerant Backward Search

So far

• Online algorithms, no full-text index: all have O(n) time factor

Now

- Assume that we have a full-text index, e.g., FM index.
- Achieves running times independent of |T| = n for exact pattern search.
- Generalization for error tolerant pattern search?

Error Tolerant Backward Search

So far

• Online algorithms, no full-text index: all have O(n) time factor

Now

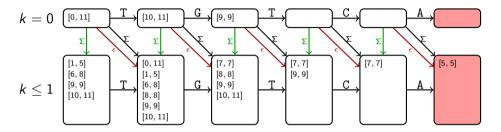
- Assume that we have a full-text index, e.g., FM index.
- Achieves running times independent of |T| = n for exact pattern search.
- Generalization for error tolerant pattern search?

Idea

- Hybrid approach between backward search and NFA.
- NFA states do not contain bits ("activity"), but sets of suffix array intervals.
- Intervals evolve along edges according to backward search.

Example: Error Tolerant Backward Search

 $\mathcal{T} = \texttt{AAAACGTACCT}$, $\mathcal{P} = \texttt{ACTGT}$, $\Sigma = \{\texttt{A},\texttt{C},\texttt{G},\texttt{T}\}$:



- Green edges: insertions
- Red edges (ε): deletions
- Black edges: matches (horizontal) and mismatches (diagonal)
- Note: numbers for illustration only, not necessarily correct.

Algorithmic Bioinformatics

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- *M*[*i*, *j*]: set of intervals [*L*, *R*], such that the length-*j* suffix of *P* occurs with ≤ *i* edit operations at pos[*r*] for all *r* ∈ [*L*, *R*].
- $M[0,0] = \{[0, n-1]\}$

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- *M*[*i*, *j*]: set of intervals [*L*, *R*], such that the length-*j* suffix of *P* occurs with ≤ *i* edit operations at pos[*r*] for all *r* ∈ [*L*, *R*].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- *M*[*i*, *j*]: set of intervals [*L*, *R*], such that the length-*j* suffix of *P* occurs with ≤ *i* edit operations at pos[*r*] for all *r* ∈ [*L*, *R*].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.
 - **2** Process deletions: interval [L, R] is copied to M[i + 1, j + 1].

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- M[i, j]: set of intervals [L, R], such that the length-j suffix of P occurs with ≤ i edit operations at pos[r] for all r ∈ [L, R].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.
 - **2** Process deletions: interval [L, R] is copied to M[i + 1, j + 1].
 - 3 Process insertions: For all s ∈ Σ, interval [L, R] is updated by prepending s; the non-empty results [L⁺_s, R⁺_s] are inserted into M[i + 1, j].

Formal Description: Error Tolerant Backward Search

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- M[i, j]: set of intervals [L, R], such that the length-j suffix of P occurs with ≤ i edit operations at pos[r] for all r ∈ [L, R].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.
 - **2** Process deletions: interval [L, R] is copied to M[i + 1, j + 1].
 - 3 Process insertions: For all s ∈ Σ, interval [L, R] is updated by prepending s; the non-empty results [L⁺_s, R⁺_s] are inserted into M[i + 1, j].
 - 4 Process substitutions: the same $[L_s^+, R_s^+]$ are also inserted into M[i+1, j+1].

Formal Description: Error Tolerant Backward Search

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- M[i, j]: set of intervals [L, R], such that the length-j suffix of P occurs with ≤ i edit operations at pos[r] for all r ∈ [L, R].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.
 - **2** Process deletions: interval [L, R] is copied to M[i + 1, j + 1].
 - 3 Process insertions: For all s ∈ Σ, interval [L, R] is updated by prepending s; the non-empty results [L⁺_s, R⁺_s] are inserted into M[i + 1, j].
 - 4 Process substitutions: the same $[L_s^+, R_s^+]$ are also inserted into M[i+1, j+1].

Formal Description: Error Tolerant Backward Search

- $(k+1) \times (m+1)$ matrix M = (M[0...k, 0...m])
- M[i, j]: set of intervals [L, R], such that the length-j suffix of P occurs with ≤ i edit operations at pos[r] for all r ∈ [L, R].
- $M[0,0] = \{[0,n-1]\}$
- For each matrix entry M[i, j] and each interval [L, R] within:
 - **1** Process matches: [L, R] is updated by prepending the next letter from P, giving $[L^+, R^+]$ (backward search), which is added to M[i, j+1] if not empty.
 - **2** Process deletions: interval [L, R] is copied to M[i + 1, j + 1].
 - 3 Process insertions: For all s ∈ Σ, interval [L, R] is updated by prepending s; the non-empty results [L⁺_s, R⁺_s] are inserted into M[i + 1, j].
 - 4 Process substitutions: the same $[L_s^+, R_s^+]$ are also inserted into M[i+1, j+1].
- Matches are found whenever an accepting state contains an interval.
- Optimization: Merge intervals before processing each node

Question

Can we reduce the time for edit distance computation to sub-quadratic?

Question

Can we reduce the time for edit distance computation to sub-quadratic?

Answer

No, not really and not generally.

Question

Can we reduce the time for edit distance computation to sub-quadratic?

Answer

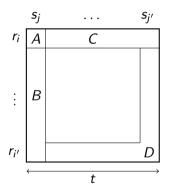
No, not really and not generally.

However...

We can save a log factor by tabulation of all possible sub-matrices. This is called the **Method of Four Russians** (1970), according to its inventors Arlazarov, Dinic, Kronrod and Faradzev.

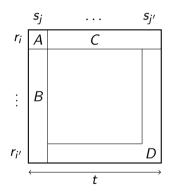
Basic Idea

- Within a submatrix as shown the results D depend only on the inputs A, B, C and on the substrings r' = r[i...i'], s' = s[j...j'].
- Definition: A t-block is a t × t submatrix.

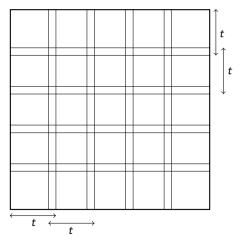


Basic Idea

- Within a submatrix as shown the results D depend only on the inputs A, B, C and on the substrings r' = r[i...i'], s' = s[j...j'].
- Definition: A t-block is a t × t submatrix.
- Idea: Subdivide matrix into *t*-blocks.
 Pre-compute results (D)
 for all combinations of (A, B, C, r', s').
- Avoid redundancies.



Basic Idea Subdivide matrix into overlapping *t*-blocks:



Algorithmic Bioinformatics

Reminder: Matrix Properties

Let T be a DP matrix satisfying the edit distance recurrence.

Lemma: Vertical Property

The value difference between any two vertically adjacent cells is at most 1: $|T[i,j] - T[i-1,j]| \le 1$.

Lemma: Horizontal Property

The value difference between any two **horizontally adjacent** cells is at most 1: $|T[i,j] - T[i,j-1]| \le 1$.

Lemma: Diagonal Property

The value of **diagonally adjacent** cells is non-decreasing, and the value difference is at most 1, i.e., $0 \le T[i,j] - T[i-1,j-1] \le 1$.

Algorithmic Bioinformatics

Observation

If the input values (areas A, B, C) in two *t*-blocks differ by one offset, and if the substrings are identical, then the output values (area D) differ by the same offset.

	а	b	b	а		а	b	b	a
b	5	6	5	4	b	2	3	2	1
а	6	6	6	5	а	3	3	3	2
b	6	6	6	6		3			
а	7	7	7	6	а	4	4	4	3

To avoid pre-computing *t*-blocks for (infinitely) many combinations of *A*, *B*, *C*, we consider *A* as an offset, and difference vectors δ_B , δ_C : Let $\delta_B[0] := 0$, and $\delta_B[i] := B[i] - B[i-1]$. Let $\delta_C[0] := 0$, and $\delta_C[j] := C[j] - C[j-1]$

b a b a	a 5 6 6 7	b 6	b 5	a 4	\rightarrow	b a b a	a 0 1 0 1	b 1	b -1	a -1	
B = [C = [-		\rightarrow \rightarrow)1,0,)1,-	[, 1] $[\cdot 1, -1]$	

Algorithmic Bioinformatics

Running time for pre-computing all blocks

Because δ_B[0] = δ_C[0] = 0 and the other δ-values are limited to {−1, 0, 1}, there are at most 3^{2(t−1)} combinations for (δ_B, δ_C).

Running time for pre-computing all blocks

- Because δ_B[0] = δ_C[0] = 0 and the other δ-values are limited to {−1, 0, 1}, there are at most 3^{2(t−1)} combinations for (δ_B, δ_C).
- There are $\sigma^{2(t-1)}$ different substring combinations.
- Pre-computing a *t*-block takes $O((t-1)^2)$ time.

Running time for pre-computing all blocks

- Because δ_B[0] = δ_C[0] = 0 and the other δ-values are limited to {−1, 0, 1}, there are at most 3^{2(t−1)} combinations for (δ_B, δ_C).
- There are $\sigma^{2(t-1)}$ different substring combinations.
- Pre-computing a *t*-block takes $O((t-1)^2)$ time.
- Total time for all blocks: $O(3^{2(t-1)}\sigma^{2(t-1)}(t-1)^2)$.

Running time for pre-computing all blocks

- Because δ_B[0] = δ_C[0] = 0 and the other δ-values are limited to {−1, 0, 1}, there are at most 3^{2(t−1)} combinations for (δ_B, δ_C).
- There are $\sigma^{2(t-1)}$ different substring combinations.
- Pre-computing a *t*-block takes $O((t-1)^2)$ time.
- Total time for all blocks: $O(3^{2(t-1)}\sigma^{2(t-1)}(t-1)^2)$.
- Choose $t := 1 + (\log_{3\sigma} n)/2$:
- Time becomes $O(n \cdot (\log_{3\sigma} n)^2)$

Running time for pre-computing all blocks

- Because δ_B[0] = δ_C[0] = 0 and the other δ-values are limited to {−1, 0, 1}, there are at most 3^{2(t−1)} combinations for (δ_B, δ_C).
- There are $\sigma^{2(t-1)}$ different substring combinations.
- Pre-computing a *t*-block takes $O((t-1)^2)$ time.
- Total time for all blocks: $O(3^{2(t-1)}\sigma^{2(t-1)}(t-1)^2)$.
- Choose $t := 1 + (\log_{3\sigma} n)/2$:
- Time becomes $O(n \cdot (\log_{3\sigma} n)^2)$

Memory requirements

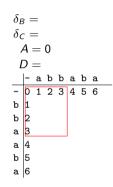
- To store the result (D region) for one block: O(t) bits (difference-encoded)
- Total: $O(n \log n)$ bits, or *n* integers.

	-	a	b	b	a	b	a
-							
b							
b							
a							
а							
b b a a b a							
a							

1 Initialize row and column 0

δ	3 = 5 = 4 : 5 :	=						
	-	а	b	b	a	b	а	
-	0	1	2	3	4	5	6	
b	1							
b	2							
a	3							
a	4							
b	5							
- b a b a b a	6							

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:



- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)

δ	$\delta_B = 0, 1, 1, 1$ $\delta_C = 0, 1, 1, 1$ A = 0 D =									
	-	a	b	b	a	b	а			
-	0	1	2	3	4	5	6			
b	1									
b	2									
a	3									
a	4									
b	5									
a	6									

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)

4 Lookup:

$$D = F[\delta_B, \delta_C, r[i':i''], s[j':j'']].$$

δο	$\delta_B = 0, 1, 1, 1$ $\delta_C = 0, 1, 1, 1$ A = 0 D = 2, 2, 2, 1, 2									
	- a b b a b a									
-	0 1 2 3 4 5 6									
b	1									
b	2									
а	3									
a	4									
b	5									
а	6									

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)
- 4 Lookup:

$$D = F[\delta_B, \delta_C, r[i':i''], s[j':j'']].$$

δζ	$\delta_B = 0, 1, 1, 1$ $\delta_C = 0, 1, 1, 1$ A = 0 D = 2, 2, 2, 1, 2									
	- a b b a b a									
-	0 1 2 3 4 5 6									
b	1 2									
b	2 1									
a	3222									
a	4									
b	5									
a	6									

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)
- 4 Lookup:

$$D = F[\delta_B, \delta_C, r[i':i''], s[j':j'']].$$

δ	$\delta_B = 0, 1, 1, 1 \ \delta_C = 0, -1, 0, 0 \ A = 3$									
$\begin{array}{c c} D = 2, 1, 1, 0, 0 \\ \hline - & a & b & b & a & b & a \\ \hline - & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ b & 1 & & 2 \\ b & 2 & & 1 \end{array}$										
	-	a	b	b	a	b	a			
-	0	1	2	3	4	5	6			
b	1			2						
b	2			1						
а	3	2	2	2						
а	4			3						
b	5			3						
a	6	5	4	4						

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)
- 4 Lookup:

$$D = F[\delta_B, \delta_C, r[i':i''], s[j':j'']].$$

δ	- 	= (=	0, : 3	1,	1,	1	., 1 D, 1	L, 2
	-	а	b	b	а	b	а	
-	0	1	2	3	4	5	6	
b	1			2			6 5 4 3	
b	2			1			4	
а	З	2	2	2	1	2	3	
a	4			З				
a b	5			З				
			4	4				

- 1 Initialize row and column 0
- **2** For all i < m/t and j < n/t:
- 3 Compute δ_B, δ_C from B, C(or re-use old difference-encoded D)
- 4 Lookup:

$$D = F[\delta_B, \delta_C, r[i':i''], s[j':j'']].$$

δο	$egin{aligned} &\delta_B = 0, 1, 0, 1 \ &\delta_C = 0, -1, 1, 1 \ &A = 2 \ &D = 1, 1, 0, 1, 0 \end{aligned}$									
-	-	a	ъ, b	т, b	а, а	ъ, Ъ	a			
-	0	1	b 2 2	3	4	5	6			
b	1			2			5			
b	2			1			4			
a	3	2	2	2	1	2	3			
a	4			3			2			
b	5			3			3			
a	6	5	4	4	3	3	2			

Running Time for Error Tolerant Pattern Search

Time for one *t*-block

- Compute differences: O(t)
- Look-up F[q] in big table: O(t) for computing index q
- Keeping track of offset: O(t)
- Total time for each block: O(t)

Running Time for Error Tolerant Pattern Search

Time for one *t*-block

- Compute differences: O(t)
- Look-up F[q] in big table: O(t) for computing index q
- Keeping track of offset: O(t)
- Total time for each block: O(t)

Total time

• Number of *t*-blocks: mn/t^2

Running Time for Error Tolerant Pattern Search

Time for one *t*-block

- Compute differences: O(t)
- Look-up F[q] in big table: O(t) for computing index q
- Keeping track of offset: O(t)
- Total time for each block: O(t)

Total time

- Number of *t*-blocks: mn/t^2
- Total time: $O(t \cdot nm/t^2) = O(nm/t) = O(nm/\log n)$

Summary: Four Russians Method

Running Times

- With the Four-Russians trick (difference coding, pre-computation of small blocks), one can compute the edit distance or do pattern search in sub-quadratic time.
- Pre-computation (all possible blocks): $O(n(\log n)^2)$ time
- Computation for two strings: $O(nm/\log n)$ time

Summary: Four Russians Method

Running Times

- With the Four-Russians trick (difference coding, pre-computation of small blocks), one can compute the edit distance or do pattern search in sub-quadratic time.
- Pre-computation (all possible blocks): $O(n(\log n)^2)$ time
- Computation for two strings: $O(nm/\log n)$ time

Practicality

- Because of the high base in the logarithm (t := 1 + (log_{3σ} n)/2), the method is only practical for large n ≥ 10 000, especially for small alphabets (DNA: σ = 4).
- For larger alphabets, much memory is needed.
- Therefore, the Four Russians Method is rarely used in practice.

Comparison of Running Times

algorithm	time	advantages	disadvantages
Basic	O(mn)	simple	slow
Ukkonen	O(kn) expected	simple	
Myers	O((m/w)n)	fast for high <i>k</i>	unintuitive
NFA	O(k(m/w)n)	fast for small <i>m</i> or <i>k</i>	slow for large k
4 Russians	$O(mn/\log n)$	nice idea	only faster for large <i>n</i>
NFA-FM	(*)	independent of <i>n</i>	exponential in $ \Sigma $, <i>m</i> , <i>k</i>

(*) NFA-FM time can be shown to be $O(\sqrt{k}(1+\sqrt{2})^{2k} 3^{m-k}|\Sigma|^k)$ for $k \leq m$.

Comparison of Running Times

algorithm	time	advantages	disadvantages
Basic	<i>O</i> (<i>mn</i>)	simple	slow
Ukkonen	O(kn) expected	simple	
Myers	O((m/w)n)	fast for high <i>k</i>	unintuitive
NFA	O(k(m/w)n)	fast for small <i>m</i> or <i>k</i>	slow for large k
4 Russians	$O(mn/\log n)$	nice idea	only faster for large <i>n</i>
NFA-FM	(*)	independent of <i>n</i>	exponential in $ \Sigma $, <i>m</i> , <i>k</i>

(*) NFA-FM time can be shown to be $O(\sqrt{k}(1+\sqrt{2})^{2k} 3^{m-k}|\Sigma|^k)$ for $k \leq m$.

Notes

- w ist the register size, typically 64 bits.
- Alignments can only be easily derived from the Basic and Ukkonen algorithms.

Summary

Today

- NFA for error tolerant pattern matching
- error tolerant pattern matching with FM index (via interval NFA)
- Four Russians' method: tabulation of small submatrices
- Comparison of algorithms

Possible Exam Questions

- Explain how the Shift-And algorithm can be adjusted to solve the approximate pattern matching problem.
- Explain the semantics of the states in the corresponding NFA.
- Explain the meaning of the different types of edges.
- How many states are always active for a NFA that allows k mismatches?
- How exactly does the bit-parallel update of the active state matrix A work?
- How can backward search be applied to error tolerant search?
- Explain the idea of the Four Russians Technique.
- Why is the block size chosen as $t := 1 + (\log_{3\sigma} n)/2$ in the Four Russians Method?

