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Reminder: Error Tolerant Pattern Matching

Problem Definition

For two strings P,T ∈ Σ∗, find approximate occurrences of P in T .

Formally: Find intervals [i , j ] of T such that the edit distance
between P and T [i . . . j ] is below a given threshold k.

Variants

Decision Problem: Is there an interval . . . ?

Counting Problem: How many intervals . . . ?

Enumeration Problem: List all intervals . . . .

Optimization Problem: Find an interval [i , j ] with the smallest edit distance
between P and T [i . . . j ] among all (no threshold k given).
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Reminder: NFA for the Exact Pattern Matching Problem

Goal

For given pattern P ∈ Σ∗, construct NFA that recognizes all strings Σ∗P.

Approach

“Linear chain” of states

Start state remains always active

Example: Σ = {A, B, C} and P = ABABC

A B A B C
S A

A,
B,
C
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Reminder: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1)|1

)
& mask[c]
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Extension to Error Tolerant Pattern Search

Idea

Start from NFA for exact pattern search

Add k additional “rows” account for up to k errors

State space: Q = {0, . . . , k} × {−1, . . . ,m − 1} for pattern P with |P| = m.

a b b a b

a b b a b

a b b a b

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k≤1

k≤2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε εΣ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ
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Extension to Error Tolerant Pattern Search

a b b a b

a b b a b

a b b a b

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k≤1

k≤2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε εΣ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

NFA for P = abbab with edit distance up to 2 and Σ = {a, b}
blue states: start states, red states: accepting states

green vertical edges: insertions in P

red diagonal edges: ε edges for deletions in P

black diagonal edges: Σ edges for mismatches in P
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Example

a b b a

a b b a

Σ Σ Σ Σ
k=0

k≤1

ε ε ε εΣ Σ Σ Σ Σ

abcabba
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Example

a b b a

a b b a

Σ Σ Σ Σ
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Example

a b b a

a b b a

Σ Σ Σ Σ
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Example

a b b a

a b b a

Σ Σ Σ Σ
k=0

k≤1

ε ε ε εΣ Σ Σ Σ Σ

abcabba

1 10
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Bit-Parallel Implementation

a b b a b

a b b a b

a b b a b

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k≤1

k≤2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε εΣ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

A0 ← (A
(old)
0 � 1|1) & mask[c]

Ai ←
(
(A

(old)
i � 1|1) & mask[c]

)
|
(
A

(old)
i−1

)︸ ︷︷ ︸
insertions

|
(
A

(old)
i−1 � 1

)︸ ︷︷ ︸
mismatches

|
(
Ai−1 � 1

)︸ ︷︷ ︸
deletions

for 0 < i ≤ k.
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Observations

a b b a b

a b b a b

a b b a b

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k≤1

k≤2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε εΣ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

As usual, only practical for |P| = m ≤ 64

Needs a loop from 0 to k: only efficient for small k .

Flexible: use generalized strings, gaps of bounded length, optional characters...

One more trick: Remove loop over k for small patterns, less flexible
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Diagonal Encoding

Instead of encoding the rows of the NFA, encode the diagonals in one bit vector.

All states in diagonals together plus separator bits must fit into 64 bits.

Can do update in time independent of k then (no loop).

Loss of flexibility; details omitted here.

a b b a b

a b b a b

a b b a b

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

k=0

k≤1

k≤2

-1 0 1 2 3 4

ε ε ε ε ε

ε ε ε ε ε

D0 D1 D2 D3
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Error Tolerant Backward Search
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Error Tolerant Backward Search

So far

Online algorithms, no full-text index: all have O(n) time factor

Now

Assume that we have a full-text index, e.g., FM index.

Achieves running times independent of |T | = n for exact pattern search.

Generalization for error tolerant pattern search?

Idea

Hybrid approach between backward search and NFA.

NFA states do not contain bits (“activity”), but sets of suffix array intervals.

Intervals evolve along edges according to backward search.
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Example: Error Tolerant Backward Search

T = AAAACGTACCT$, P = ACTGT, Σ = {A, C, G, T}:

[0, 11] [10, 11] [9, 9]

[1, 5]

[6, 8]

[9, 9]

[10, 11]

[0, 11]

[1, 5]

[6, 8]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[8, 8]

[9, 9]

[10, 11]

[7, 7]

[9, 9]

[7, 7] [5, 5]

k = 0

k ≤ 1

Σ Σ Σ Σ Σ

T G T C A

T G T C A

ε ε ε ε ε
Σ Σ Σ Σ Σ

Green edges: insertions

Red edges (ε): deletions

Black edges: matches (horizontal) and mismatches (diagonal)

Note: numbers for illustration only, not necessarily correct.
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Formal Description: Error Tolerant Backward Search

(k + 1)× (m + 1) matrix M = (M[0 . . . k , 0 . . .m])

M[i , j ]: set of intervals [L,R], such that
the length-j suffix of P occurs with ≤ i edit operations at pos[r ] for all r ∈ [L,R].

M[0, 0] = {[0, n − 1]}

For each matrix entry M[i , j ] and each interval [L,R] within:

1 Process matches: [L,R] is updated by prepending the next letter from P,
giving [L+,R+] (backward search), which is added to M[i , j + 1] if not empty.

2 Process deletions: interval [L,R] is copied to M[i + 1, j + 1].
3 Process insertions: For all s ∈ Σ, interval [L,R] is updated by prepending s;

the non-empty results [L+
s ,R

+
s ] are inserted into M[i + 1, j ].

4 Process substitutions: the same [L+
s ,R

+
s ] are also inserted into M[i + 1, j + 1].

Matches are found whenever an accepting state contains an interval.

Optimization: Merge intervals before processing each node
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The Four Russians Method
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The Four Russians Method

Question

Can we reduce the time for edit distance computation to sub-quadratic?

Answer

No, not really and not generally.

However...

We can save a log factor by tabulation of all possible sub-matrices.
This is called the Method of Four Russians (1970),
according to its inventors Arlazarov, Dinic, Kronrod and Faradzev.
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Basic Idea

A

B

C

D

ri

ri ′

sj sj ′

...

. . .

t

Within a submatrix as shown
the results D depend only on
the inputs A,B,C and on
the substrings r ′ = r [i . . . i ′], s ′ = s[j . . . j ′].

Definition: A t-block
is a t × t submatrix.

Idea: Subdivide matrix into t-blocks.
Pre-compute results (D)
for all combinations of (A,B,C , r ′, s ′).

Avoid redundancies.
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Basic Idea
Subdivide matrix into overlapping t-blocks:

t
t

t

t
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Reminder: Matrix Properties

Let T be a DP matrix satisfying the edit distance recurrence.

Lemma: Vertical Property

The value difference between any two vertically adjacent cells is at most 1:
|T [i , j ]− T [i − 1, j ]| ≤ 1.

Lemma: Horizontal Property

The value difference between any two horizontally adjacent cells is at most 1:
|T [i , j ]− T [i , j − 1]| ≤ 1.

Lemma: Diagonal Property

The value of diagonally adjacent cells is non-decreasing,
and the value difference is at most 1, i.e., 0 ≤ T [i , j ]− T [i − 1, j − 1] ≤ 1.
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Observation

If the input values (areas A,B,C ) in two t-blocks differ by one offset,
and if the substrings are identical,
then the output values (area D) differ by the same offset.

a b b a

b 5 6 5 4
a 6 6 6 5
b 6 6 6 6
a 7 7 7 6

a b b a

b 2 3 2 1
a 3 3 3 2
b 3 3 3 3
a 4 4 4 3
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Preprocessing

To avoid pre-computing t-blocks for (infinitely) many combinations of A,B,C ,
we consider A as an offset, and difference vectors δB , δC :
Let δB [0] := 0, and δB [i ] := B[i ]− B[i − 1].
Let δC [0] := 0, and δC [j ] := C [j ]− C [j − 1]

a b b a

b 5 6 5 4
a 6
b 6
a 7

→

a b b a

b 0 1 -1 -1
a 1
b 0
a 1

B = [5, 6, 6, 7] → δB = [(0, )1, 0, 1]

C = [5, 6, 5, 4] → δC = [(0, )1,−1,−1]
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Preprocessing

Running time for pre-computing all blocks

Because δB [0] = δC [0] = 0 and the other δ-values are limited to {−1, 0, 1},
there are at most 32(t−1) combinations for (δB , δC ).

There are σ2(t−1) different substring combinations.

Pre-computing a t-block takes O((t − 1)2) time.

Total time for all blocks: O
(
32(t−1)σ2(t−1)(t − 1)2

)
.

Choose t := 1 + (log3σ n)/2:

Time becomes O
(
n · (log3σ n)2

)
Memory requirements

To store the result (D region) for one block: O(t) bits (difference-encoded)

Total: O(n log n) bits, or n integers.

Algorithmic Bioinformatics 23



Preprocessing

Running time for pre-computing all blocks

Because δB [0] = δC [0] = 0 and the other δ-values are limited to {−1, 0, 1},
there are at most 32(t−1) combinations for (δB , δC ).

There are σ2(t−1) different substring combinations.

Pre-computing a t-block takes O((t − 1)2) time.

Total time for all blocks: O
(
32(t−1)σ2(t−1)(t − 1)2

)
.

Choose t := 1 + (log3σ n)/2:

Time becomes O
(
n · (log3σ n)2

)
Memory requirements

To store the result (D region) for one block: O(t) bits (difference-encoded)

Total: O(n log n) bits, or n integers.

Algorithmic Bioinformatics 23



Preprocessing

Running time for pre-computing all blocks

Because δB [0] = δC [0] = 0 and the other δ-values are limited to {−1, 0, 1},
there are at most 32(t−1) combinations for (δB , δC ).

There are σ2(t−1) different substring combinations.

Pre-computing a t-block takes O((t − 1)2) time.

Total time for all blocks: O
(
32(t−1)σ2(t−1)(t − 1)2

)
.

Choose t := 1 + (log3σ n)/2:

Time becomes O
(
n · (log3σ n)2

)
Memory requirements

To store the result (D region) for one block: O(t) bits (difference-encoded)

Total: O(n log n) bits, or n integers.
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Preprocessing

Running time for pre-computing all blocks

Because δB [0] = δC [0] = 0 and the other δ-values are limited to {−1, 0, 1},
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Computation

1 Initialize row and column 0

2 For all i < m/t and j < n/t:

3 Compute δB , δC from B,C
(or re-use old difference-encoded D)

4 Lookup:
D = F [δB , δC , r [i ′ : i ′′], s[j ′ : j ′′]].

5 Keep track of offset A.

- a b b a b a

- 0

b

b

a 3

a 4

b

a 6

V
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Computation

1 Initialize row and column 0

2 For all i < m/t and j < n/t:

3 Compute δB , δC from B,C
(or re-use old difference-encoded D)

4 Lookup:
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5 Keep track of offset A.

- a b b a b a

- 0 1 2 3 4 5 6

b 1

b 2

a 3

a 4

b 5

a 6

δB = 0, 1, 1, 1

δC = 0, 1, 1, 1

A = 0

D =

Algorithmic Bioinformatics 24



Computation
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4 Lookup:
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Computation

1 Initialize row and column 0

2 For all i < m/t and j < n/t:

3 Compute δB , δC from B,C
(or re-use old difference-encoded D)

4 Lookup:
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Computation

1 Initialize row and column 0

2 For all i < m/t and j < n/t:

3 Compute δB , δC from B,C
(or re-use old difference-encoded D)

4 Lookup:
D = F [δB , δC , r [i ′ : i ′′], s[j ′ : j ′′]].

5 Keep track of offset A.

- a b b a b a
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Computation

1 Initialize row and column 0

2 For all i < m/t and j < n/t:

3 Compute δB , δC from B,C
(or re-use old difference-encoded D)

4 Lookup:
D = F [δB , δC , r [i ′ : i ′′], s[j ′ : j ′′]].

5 Keep track of offset A.

- a b b a b a

- 0 1 2 3 4 5 6

b 1 2 5

b 2 1 4

a 3 2 2 2 1 2 3

a 4 3 2

b 5 3 3

a 6 5 4 4 3 3 2

δB = 0, 1, 0, 1

δC = 0,−1, 1, 1

A = 2

D = 1, 1, 0, 1, 0
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Running Time for Error Tolerant Pattern Search

Time for one t-block

Compute differences: O(t)

Look-up F [q] in big table: O(t) for computing index q

Keeping track of offset: O(t)

Total time for each block: O(t)

Total time

Number of t-blocks: mn/t2

Total time: O(t · nm/t2) = O(nm/t) = O(nm/ log n)
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Summary: Four Russians Method

Running Times

With the Four-Russians trick (difference coding, pre-computation of small blocks),
one can compute the edit distance or do pattern search in sub-quadratic time.

Pre-computation (all possible blocks): O
(
n (log n)2

)
time

Computation for two strings: O(nm/ log n) time

Practicality

Because of the high base in the logarithm (t := 1 + (log3σ n)/2),
the method is only practical for large n ≥ 10 000,
especially for small alphabets (DNA: σ = 4).

For larger alphabets, much memory is needed.

Therefore, the Four Russians Method is rarely used in practice.
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Comparison of Running Times

algorithm time advantages disadvantages
Basic O(mn) simple slow
Ukkonen O(kn) expected simple
Myers O((m/w)n) fast for high k unintuitive
NFA O(k(m/w)n) fast for small m or k slow for large k
4 Russians O(mn/ log n) nice idea only faster for large n

NFA-FM (*) independent of n exponential in |Σ|, m, k

(*) NFA-FM time can be shown to be O(
√
k (1 +

√
2)2k 3m−k |Σ|k) for k ≤ m.

Notes

w ist the register size, typically 64 bits.

Alignments can only be easily derived from the Basic and Ukkonen algorithms.
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Summary

Today

NFA for error tolerant pattern matching

error tolerant pattern matching with FM index (via interval NFA)

Four Russians’ method: tabulation of small submatrices

Comparison of algorithms
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Possible Exam Questions

Explain how the Shift-And algorithm can be adjusted to solve the approximate
pattern matching problem.

Explain the semantics of the states in the corresponding NFA.

Explain the meaning of the different types of edges.

How many states are always active for a NFA that allows k mismatches?

How exactly does the bit-parallel update of the active state matrix A work?

How can backward search be applied to error tolerant search?

Explain the idea of the Four Russians Technique.

Why is the block size chosen as t := 1 + (log3σ n)/2 in the Four Russians Method?
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