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Overview

Previous Lecture

Definition of distance measures, in particular edit distance

Sequence of edit operations: copy (free), substitution, insertion, deletion (1 each)

Global sequence alignment (full strings)

Edit path in edit graph

Edit distance = least-cost edit sequence
= least-cost alignment = least-cost path in alignment graph

Today’s Lecture

Pattern Matching with respect to edit distance

Semiglobal Alignment:
Compare one full string (pattern) against substrings of a longer string (text)
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Error Tolerant Pattern Matching

Problem Definition

For two strings P,T ∈ Σ∗, find approximate occurrences of P in T .

Formally: Find intervals [i , j ] of T such that the edit distance
between P and T [i . . . j ] is below a given threshold k.

Variants

Decision Problem: Is there an interval . . . ?

Counting Problem: How many intervals . . . ?

Enumeration Problem: List all intervals . . . .

Optimization Problem: Find an interval [i , j ] with the smallest edit distance
between P and T [i . . . j ] among all (no threshold k given).
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Alignment Graph for Global Alignment
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Alignment Graph for Semiglobal Alignment (Pattern Matching)
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Generalized Edit Graph Algorithm

1 Topologically sort all nodes

2 Iterate over nodes in topological order

Compute value of that node: Minimize over incoming edges:
cost at source node + edge cost
Mark edge(s) that gave rise to optimum

3 Value at final node v• gives solution of optimization problem

4 Traceback: go back along marked edges to construct alignment
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Code: Semiglobal Alignment (Enumeration of End Positions)

1 def pattern_search(P, T, k):

2 # compare edit ditance computation

3 m, n = len(P), len(T)

4 # Column 0

5 Dc = list(range(m+1)) # Dc: current column in D

6 Dp = [0] * (m+1) # Dp: previous column in D

7 # Iterate over columns j and characters tj=T[j] in T

8 for j, tj in zip(count(1), T):

9 Dp, Dc = Dc, Dp # swap to recompute Dc

10 Dc[0] = 0 # row 0: D[0,j] = 0, start anywhere

11 # iterate over rows i and characters pi=P[i] in P

12 for i, pi in zip(count(1), P):

13 Dc[i] = min( Dp[i - 1] + (pi != tj),

14 Dp[i] + 1,

15 Dc[i - 1] + 1 )

16 if Dc[m] <= k: yield j
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Traceback: Getting the Actual Alignment

Approach

When computing the value of a graph node (cell in DP table),
memorize the predecessor(s) that gave rise to the optimum.

From bottom right cell, move to top left along these edges.

Reconstructs the alignment in reverse (but easy to flip when done)

Options for managing the traceback information

Option 1: store “predecessor edges” in extra table

Option 2: recompute them for each cell encountered during traceback
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Ukkonen’s Speed-Up of Semiglobal Alignment

Setting as in shown code

Search for approximate occurrences with edit distance ≤ k.

Question: Can we omit computing parts of the graph / DP table?

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 1 1 0

2 1 1 1 1 1 0 1 0 1 1

3 2 2 1 2 2 1 1 1 0 1

4 3 3 2 1 2 2 2 1 1 1

5 4 3 3 2 1 2 2 2 2 1

M

A

O

A

M

A M O A M A M A O M
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Semiglobal Alignment: Ukkonen’s Trick

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 1 1 0

2 1 1 1 1 1 0 1 0 1 1

3 2 2 1 2 2 1 1 1 0 1

4 3 3 2 1 2 2 2 1 1 1

5 4 3 3 2 1 2 2 2 2 1

M

A

O

A

M

A M O A M A M A O M

Define: lastk(j) := max{i |T [i , j ] ≤ k , T [i ′, j ] > k for all i ′ > i}
Trick: lastk(j + 1) ≤ lastk(j) + 1
Why? Difference between neighboring cells is at most 1 (proof follows).

Speedup: average runtime improves from O(mn) to O(kn) (hard proof!)
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Edit Distance DP Table:
Horizontal, Vertical, and Diagonal Properties
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Motivation

Setting

DP table for edit distance computations: global and semi-global alignment

We astated that the difference of neighboring cells is at most 1.
Needed for speed-ups:

Ukkonen’s trick (just seen)

Myers’ bit-parallel algorithm (next)

Goal

State precise properties and prove them.
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Properties

Let T be a DP table satisfying the edit distance recurrence.

Lemma: Vertical Property

The value difference between any two vertically adjacent cells is at most 1:
|T [i , j ]− T [i − 1, j ]| ≤ 1.

Lemma: Horizontal Property

The value difference between any two horizontally adjacent cells is at most 1:
|T [i , j ]− T [i , j − 1]| ≤ 1.

Lemma: Diagonal Property

The value of diagonally adjacent cells is non-decreasing,
and the value difference is at most 1, i.e., 0 ≤ T [i , j ]− T [i − 1, j − 1] ≤ 1.
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Vertical Property

Lemma: Vertical Property

The value difference between any two vertically adjacent cells is at most 1:
|T [i , j ]− T [i − 1, j ]| ≤ 1.

Proof idea

Show separately:

T [i , j ]− T [i − 1, j ] ≤ 1⇔ T [i , j ] ≤ T [i − 1, j ] + 1

Follows immediately from recurrence

T [i − 1, j ]− T [i , j ] ≤ 1⇔ T [i − 1, j ]− 1 ≤ T [i , j ]

Left to be shown.

d v

h x

     x ≤ v+1

v-1 ≤ x (to be shown)
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Vertical Property (cont’d)

To be shown: v − 1 ≤ x

Case 1: Minimum from vertical neighbor

d v

h x
v+1 = x v-1 ≤ x

Case 2: Minimum from diagonal neighbor

d v

h x
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Vertical Property (cont’d)

To be shown: v − 1 ≤ x

Case 3: Minimum from horizontal neighbor

v

xhkh1 ...

vkv1 ...

Proof by induction:

Induction base (v1 − 1 ≤ h1): (follows from Case I or II)

Induction step (vj−1 − 1 ≤ hj−1 ⇒ vj − 1 ≤ hj): we have:

hj−1 + 1 = hj (by definition, minimum is horizontal)
vj−1 ≤ hj−1 + 1 (by induction assumption)
vj − 1 ≤ vj−1 (by recurrence relation)

Taken together: vj − 1 ≤ vj−1 ≤ hj−1 + 1 = hj
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Horizontal Property

Lemma: Horizontal Property

The value difference between any two horizontally adjacent cells is at most one, that
is, |T [i , j ]− T [i , j − 1]| ≤ 1.

Proof

Symmetric to the proof for the vertical property.
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Diagonal Property

Lemma: Diagonal Property

The value of diagonally adjacent cells is non-decreasing and the value difference is at
most one, that is, 0 ≤ T [i , j ]− T [i − 1, j − 1] ≤ 1.

Proof idea

Show separately:

T [i , j ]− T [i − 1, j − 1] ≤ 1⇔ T [i , j ] ≤ T [i − 1, j − 1] + 1

Follows immediately from recurrence

0 ≤ T [i , j ]− T [i − 1, j − 1]⇔ T [i − 1, j − 1] ≤ T [i , j ]

Left to be shown.
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Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1 (horizontal property)

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1 (horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1 (vertical property)

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1 (vertical property)

h+1 = x (origin of minimum)

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1

d ≤ x

(vertical property)

h+1 = x (origin of minimum)

Case 3: Minimum from diagonal neighbor

d v

h x

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1

d ≤ x

(vertical property)

h+1 = x (origin of minimum)

Case 3: Minimum from diagonal neighbor

d v

h x
Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1

d ≤ x

(vertical property)

h+1 = x (origin of minimum)

Case 3: Minimum from diagonal neighbor

d v

h x

x = d   or   x = d+1
(match) (mismatch)

Algorithmic Bioinformatics 19



Diagonal Property: Show d ≤ x

Case 1: Minimum from vertical neighbor

d v

h x

d ≤ v+1

d ≤ x

(horizontal property)

v+1 = x (origin of minimum)

Case 2: Minimum from horizontal neighbor

d v

h x

d ≤ h+1

d ≤ x

(vertical property)

h+1 = x (origin of minimum)

Case 3: Minimum from diagonal neighbor

d v

h x

x = d   or   x = d+1

d ≤ x

(match) (mismatch)

Algorithmic Bioinformatics 19



Myers’ Fast Bit Vector Algorithm for Edit
Distance

A Fast Bit-Vector Algorithm for Approximate String Matching Based on DP,

Gene Myers, 1999, Journal of the ACM
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Bit-parallel computation

Ideas

We only need to keep one active column in memory

Consecutive cells in the DP matrix can only differ by {-1,0,1}.
→ We can store differences instead of absolute values.

0  0  0  0  0  0  0
1  1  0  1  0  1  0
2  2  1  0  1  0  1
3  3  2  1  1  1  1
4  4  3  2  1  2  1

A
N
N
A

B A N A N A
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Bit-parallel computation

Definitions

Instead of considering absolute values, we track differences between adjacent rows and
columns in the DP matrix:

∆hi ,j := T [i , j ]− T [i , j − 1] ∈ {−1, 0, 1} (horizontal)

∆vi ,j := T [i , j ]− T [i − 1, j ] ∈ {−1, 0, 1} (vertical)

∆di ,j := T [i , j ]− T [i − 1, j − 1] ∈ {0, 1} (diagonal)

Note

Indices i , j denote the same cell as in the DP matrix.
However, during the algorithm we never have the full matrix with all boolean variables
in memory, but only single columns, each of which is stored as a bit vector.
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Bit-parallel computation

Original costs from vertical differences

The original values of the full edit distance DP matrix (left)
can be retrieved from the matrix of ∆vi ,j values (right):

T [i , j ] =
∑i

r=0 ∆vr ,j

0  0  0  0  0  0  0
1  1  0  1  0  1  0
2  2  1  0  1  0  1
3  3  2  1  1  1  1
4  4  3  2  1  2  1

A
N
N
A

B A N A N A
0  0  0  0  0  0  0
+1 +1  0 +1  0 +1  0
+1 +1 +1 -1 +1 -1 +1
+1 +1 +1 +1  0 +1  0
+1 +1 +1 +1  0 +1  0

A
N
N
A

B A N A N A
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Bit-parallel computation

Horizontal connections in last row

We can keep track of the relevant last row with costj := T [m, j ] by using

cost0 = m ,

costj = costj−1 + ∆hm,j .

0  0  0  0  0  0  0
1  1  0  1  0  1  0
2  2  1  0  1  0  1
3  3  2  1  1  1  1
4  4  3  2  1  2  1

A
N
N
A

B A N A N A
0  0  0  0  0  0  0
+1 +1  0 +1  0 +1  0
+1 +1 +1 -1 +1 -1 +1
+1 +1 +1 +1  0 +1  0
+1 +1 +1 +1  0 +1  0

A
N
N
A

B A N A N A
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Bit-parallel computation

Definitions and Encodings

The differences cann be tracked using bit vectors as follows:

VPi ,j =

{
1 if ∆vi ,j = 1 ,
0 otherwise.

VNi ,j =

{
1 if ∆vi ,j = −1 ,
0 otherwise.

HPi ,j =

{
1 if ∆hi ,j = 1 ,
0 otherwise.

HNi ,j =

{
1 if ∆hi ,j = −1 ,
0 otherwise.

D0i ,j =

{
1 if ∆di ,j = 0 ,
0 otherwise.

∆vi ,j = VPi ,j − VNi ,j

∆hi ,j = HPi ,j − HNi ,j

∆di ,j = 1− D0i ,j
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D0i ,j =

{
1 if ∆di ,j = 0 ,
0 otherwise.

∆vi ,j = VPi ,j − VNi ,j

∆hi ,j = HPi ,j − HNi ,j

∆di ,j = 1− D0i ,j
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Dependencies between variables

Observation

HNi ,j ⇔ VPi ,j−1 and D0i ,j

Proof idea

(i-1, j-1) (i-1, j) 

(i, j-1) (i, j) 

x+1 

x 

x 

DOi,j	 VPi,j	 HNi,j	

0	 0	 0	

0	 1	 0	

1	 0	 0	

1	 1	 1	
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Dependencies between variables

More dependencies

HNi ,j ⇔ VPi ,j−1 and D0i ,j

VNi ,j ⇔ HPi−1,j and D0i ,j

VPi ,j ⇔ HNi−1,j or not (HPi−1,j and D0i ,j)

HPi ,j ⇔ VNi ,j−1 or not (VPi ,j−1 and D0i ,j)

D0i ,j ⇔ (pi == tj) or VNi ,j−1 or HNi−1,j

Idea of Myers’ algorithm

Store full columns (length m) of each quantity in a bit vector.

Apply bit-parallel update formulas based on dependencies and text character.
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Problem: Circular Dependencies

Problem

For example, D0 and HN depend on each other (same j)!

HNi ,j ⇔ VPi ,j−1 and D0i ,j

D0i ,j ⇔ (pi == tj) or VNi ,j−1 or HNi−1,j

Solution

Denote another bit vector X with Xj = (p[i ] == t[j ]).

Pre-compute the bit vector for every possible text character t[j ].

The following formula computes the complete bit vector D0 from the previous VP:

D0 = (((VP&X ) + VP) ∧ VP) | X
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Code: Myers’ Algorithm

1 def myers(P,T,k):

2 B = defaultdict(int)

3 i = 1

4 for c in P:

5 B[c] = B[c] | i

6 i = i << 1

7 m = len(P)

8 VP = (1 << m) - 1 # set m bits

9 VN = 0

10 cost = m

11 # ... (next slide)
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Code: Myers’ Algorithm

1 def myers(P,T,k):

2 # ... preprocessing (previous slide)

3 for i, c in enumerate(T):

4 Eq = B[c]

5 Xv = Eq | VN

6 Xh = (((Eq & VP) + VP) ^ VP) | Eq

7 HP = VN | ~(Xh|VP)

8 HN = VP & Xh

9 if HP & (1<<(m -1)):

10 cost += 1

11 elif HN & (1<<(m -1)):

12 cost -= 1

13 if cost <= k:

14 yield i

15 HP = HP << 1

16 VP = (HN <<1) | ~(Xv|HP)

17 VN = HP & Xv
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Summary: Myers’ Bit-Vector Algorithm

Idea

Neighboring cells in DP table can differ by at most one

Encode these differences using bit vectors

Keep track of score in bottom row

Formulate algorithm in terms of bit-parallel operations

Complete description of Myers’ algorithm

Mäkinen, Belazzougui, Cunial, Tomescu
Genome-Scale Algorithm Design: Biological Sequence
Analysis in the Era of High-Throughput Sequencing

(see Section 6.1.3 for Myers’ algorithm)
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Summary

Variants of the error-tolerant pattern matching problem

Global vs. semi-global alignment and their edit graphs

General graph alignment algorithm

Traceback: follow back edges that led to optima

Ukkonen’s speed-up: lastk(j + 1) ≤ lastk(j) + 1

Proof of differences in DP table: horizontal, vertical, and diagonal properties

Ideas of Myers’ bit-parallel algorithm: difference encoding
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Exam Questions

Define variations of the error tolerant pattern matching problem.

How does error-tolerant pattern search relate to semi-global alignment?

How does the edit / alignment graph differ from that for global alignment?

Explain Ukkonen’s speed-up (in theory / on a small example)

Explain the horizontal, vertical, and diagonal properties.

What are the ideas to prove these properties?

Why are these properties helpful?

What is the idea behind Myers’ bit vector algorithm?

How does the original DP matrix relate to the used bit vectors?
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