
Distance and Similarity Measures between Strings
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Introduction

Motivation

We discussed exact pattern search,
but also with extended patterns, e.g., M[ae][iy]er.

In practice, error-tolerant pattern search is far more important:
spelling correction, word suggestions,
in bioinformatics: genome comparison, DNA read mapping.

To define the error tolerant pattern matching problem,
we first need distance or similarity measures between strings.

Algorithmic Bioinformatics 2

Distance Measures between Strings

Algorithmic Bioinformatics 3

Metrics

A metric is a distance measure with special properties.

Definition (Metric)

Let X be a set.
A function d : X × X → R≥0 is called metric if and only if

1 d(x , y) = 0 if and only if x = y (definiteness),

2 d(x , y) = d(y , x) for all x , y (symmetry),

3 d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z (triangle inequality).

Algorithmic Bioinformatics 4

Hamming Distance

For strings of the same length, the Hamming distance is a natural measure
(due to Richard Wesley Hamming, 1915–1998).

Definition (Hamming distance)

For any alphabet Σ and any n ≥ 0, a Hamming distance dH = d
(Σ,n)
H is defined on Σn:

We define dH(s, t) as the number of positions where s and t differ:

dH(s, t) :=
∣∣{i | si 6= ti}

∣∣
Note

The Hamming distance is not defined for |s| 6= |t|.

Exercise

The Hamming distance is a metric on Σn.

Algorithmic Bioinformatics 5

Hamming Distance

For strings of the same length, the Hamming distance is a natural measure
(due to Richard Wesley Hamming, 1915–1998).

Definition (Hamming distance)

For any alphabet Σ and any n ≥ 0, a Hamming distance dH = d
(Σ,n)
H is defined on Σn:

We define dH(s, t) as the number of positions where s and t differ:

dH(s, t) :=
∣∣{i | si 6= ti}

∣∣
Note

The Hamming distance is not defined for |s| 6= |t|.

Exercise

The Hamming distance is a metric on Σn.

Algorithmic Bioinformatics 5

Example and Code: Hamming Distance

Example: Hamming distance 2

1 def hamming_distance(s, t):

2 if len(s) != len(t):

3 raise ValueError(’strings have unequal lengths ’)

4 return sum(x != y for x, y in zip(s, t))

Notes on Pythonic Code

Why raise ValueError and not an assert ?
Errors are for user errors, assert for catching programmer errors.

zip: parallel iteration over two (or more) iterables

sum with generator expression

Algorithmic Bioinformatics 6

Example and Code: Hamming Distance

Example: Hamming distance 2

1 def hamming_distance(s, t):

2 if len(s) != len(t):

3 raise ValueError(’strings have unequal lengths ’)

4 return sum(x != y for x, y in zip(s, t))

Notes on Pythonic Code

Why raise ValueError and not an assert ?
Errors are for user errors, assert for catching programmer errors.

zip: parallel iteration over two (or more) iterables

sum with generator expression

Algorithmic Bioinformatics 6

Example and Code: Hamming Distance

Example: Hamming distance 2

1 def hamming_distance(s, t):

2 if len(s) != len(t):

3 raise ValueError(’strings have unequal lengths ’)

4 return sum(x != y for x, y in zip(s, t))

Notes on Pythonic Code

Why raise ValueError and not an assert ?
Errors are for user errors, assert for catching programmer errors.

zip: parallel iteration over two (or more) iterables

sum with generator expression

Algorithmic Bioinformatics 6

q-Gram (or k-Mer) Distance

For strings of any length, we can compare the multisets of their q-grams or k-mers
(substrings of length q or k, respectively).

Definition (q-gram distance)

For a string s ∈ Σ∗ and any q-gram x ∈ Σq,
let Nx(s) be the number of occurrences of x in s.
Then the q-gram distance between s and t is defined as

dq-gram(s, t) :=
∑
x∈Σq

|Nx(s)− Nx(t)|.

Note and exercise

This is not a metric on Σ∗.

Algorithmic Bioinformatics 7

Edit Distance

Finally, a metric on Σ∗ is given by the edit distance or Levenshtein distance
(Vladimir Iosifovich Levenshtein, 1935–2017, Moscow).

Definition (Edit distance)

The edit distance between strings s and t is defined as the minimum number
of edit operations needed to transform s into t (or t into s).

Edit operations are

1 substituting one character with a different one

2 deleting one character

3 inserting one character

Exercise

The edit distance is a metric on Σ∗.

Algorithmic Bioinformatics 8

Edit Distance

Finally, a metric on Σ∗ is given by the edit distance or Levenshtein distance
(Vladimir Iosifovich Levenshtein, 1935–2017, Moscow).

Definition (Edit distance)

The edit distance between strings s and t is defined as the minimum number
of edit operations needed to transform s into t (or t into s).

Edit operations are

1 substituting one character with a different one

2 deleting one character

3 inserting one character

Exercise

The edit distance is a metric on Σ∗.

Algorithmic Bioinformatics 8

Examples for the Edit Distance

- a n a n a s

b a n a n a -

(2 operations, minimal)

d u c k t a l e s

d u c t t a p e -

(3 operations, minimal)

Algorithmic Bioinformatics 9

Visualising the Edit Process: Sequence Alignment

There are many possibilities to transform s into t:
We need to determine the minimum number of edit operations that are required.

h a n d h a n d - - - - h a n d -

a n d i - - - - a n d i - a n d i

Because edit operations cannot change the relative order of characters,
we can examine the edit process from left to right.
The process is visualized by a sequence alignment, as shown above.

Definition (Global sequence alignment)

A global alignment between s, t ∈ Σ∗ is a string A over the
alignment alphabet (Σ ∪ {−})2 \ {(−,−)}, with projections π1(A) = s, π2(A) = t.
Here π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε

(“first row without gaps”), and π2 is symmetric for the second row.

Algorithmic Bioinformatics 10

Visualising the Edit Process: Sequence Alignment

There are many possibilities to transform s into t:
We need to determine the minimum number of edit operations that are required.

h a n d h a n d - - - - h a n d -

a n d i - - - - a n d i - a n d i

Because edit operations cannot change the relative order of characters,
we can examine the edit process from left to right.
The process is visualized by a sequence alignment, as shown above.

Definition (Global sequence alignment)

A global alignment between s, t ∈ Σ∗ is a string A over the
alignment alphabet (Σ ∪ {−})2 \ {(−,−)}, with projections π1(A) = s, π2(A) = t.
Here π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε

(“first row without gaps”), and π2 is symmetric for the second row.

Algorithmic Bioinformatics 10

Visualising the Edit Process: Sequence Alignment

There are many possibilities to transform s into t:
We need to determine the minimum number of edit operations that are required.

h a n d h a n d - - - - h a n d -

a n d i - - - - a n d i - a n d i

Because edit operations cannot change the relative order of characters,
we can examine the edit process from left to right.
The process is visualized by a sequence alignment, as shown above.

Definition (Global sequence alignment)

A global alignment between s, t ∈ Σ∗ is a string A over the
alignment alphabet (Σ ∪ {−})2 \ {(−,−)}, with projections π1(A) = s, π2(A) = t.
Here π1 is the string homomorphism with π1

(
(a, b)

)
:= a and π1

(
(−, b)

)
:= ε

(“first row without gaps”), and π2 is symmetric for the second row.

Algorithmic Bioinformatics 10

Computing the Edit Distance

Observation

A global alignment of strings sa and tb (with s, t ∈ Σ∗ and a, b ∈ Σ)
can end in exactly one of three ways as shown below.

s a

t b

sa -

t b

s a

tb -

From this observation, we can derive a recursive method to compute the edit distance.

Algorithmic Bioinformatics 11

Computing the Edit Distance

Lemma (Recurrence for the edit distance)

Let s, t ∈ Σ∗; let ε be the empty string; let a, b ∈ Σ be single characters.
Let d be the edit distance on Σ∗. Then

d(s, ε) = |s|,
d(ε, t) = |t|,

d(a, b) =

{
1 if a 6= b,

0 if a = b,

d(sa, tb) = min

d(s, t) + d(a, b),

d(s, tb) + 1,

d(sa, t) + 1.

Algorithmic Bioinformatics 12

Proof

d(sa, tb) = min

d(s, t) + d(a, b),

d(s, tb) + 1,

d(sa, t) + 1.

The elementary cases d(s, ε), d(ε, t), d(a, b) are trivial.
For d(sa, tb), “≤” holds because the 3 cases represent valid edit sequence extensions.

Indirect proof by induction for “≥”: Assume that equality holds
for all prefixes x of sa and y of tb with |x |+ |y | < |sa|+ |tb|, but d(sa, tb) < min(. . .).
The optimal alignment of sa and tb must end in one of the three ways discussed.
Remove its last column, and reduce the case to one of d(s, t) or d(s, tb) or d(sa, t).
Because the last column added 0 or 1 to the distance correctly,
it follows that already the reduced distance must have been better than optimal. E

Algorithmic Bioinformatics 13

Proof

d(sa, tb) = min

d(s, t) + d(a, b),

d(s, tb) + 1,

d(sa, t) + 1.

The elementary cases d(s, ε), d(ε, t), d(a, b) are trivial.
For d(sa, tb), “≤” holds because the 3 cases represent valid edit sequence extensions.

Indirect proof by induction for “≥”: Assume that equality holds
for all prefixes x of sa and y of tb with |x |+ |y | < |sa|+ |tb|, but d(sa, tb) < min(. . .).

The optimal alignment of sa and tb must end in one of the three ways discussed.
Remove its last column, and reduce the case to one of d(s, t) or d(s, tb) or d(sa, t).
Because the last column added 0 or 1 to the distance correctly,
it follows that already the reduced distance must have been better than optimal. E

Algorithmic Bioinformatics 13

Proof

d(sa, tb) = min

d(s, t) + d(a, b),

d(s, tb) + 1,

d(sa, t) + 1.

The elementary cases d(s, ε), d(ε, t), d(a, b) are trivial.
For d(sa, tb), “≤” holds because the 3 cases represent valid edit sequence extensions.

Indirect proof by induction for “≥”: Assume that equality holds
for all prefixes x of sa and y of tb with |x |+ |y | < |sa|+ |tb|, but d(sa, tb) < min(. . .).
The optimal alignment of sa and tb must end in one of the three ways discussed.
Remove its last column, and reduce the case to one of d(s, t) or d(s, tb) or d(sa, t).

Because the last column added 0 or 1 to the distance correctly,
it follows that already the reduced distance must have been better than optimal. E

Algorithmic Bioinformatics 13

Proof

d(sa, tb) = min

d(s, t) + d(a, b),

d(s, tb) + 1,

d(sa, t) + 1.

The elementary cases d(s, ε), d(ε, t), d(a, b) are trivial.
For d(sa, tb), “≤” holds because the 3 cases represent valid edit sequence extensions.

Indirect proof by induction for “≥”: Assume that equality holds
for all prefixes x of sa and y of tb with |x |+ |y | < |sa|+ |tb|, but d(sa, tb) < min(. . .).
The optimal alignment of sa and tb must end in one of the three ways discussed.
Remove its last column, and reduce the case to one of d(s, t) or d(s, tb) or d(sa, t).
Because the last column added 0 or 1 to the distance correctly,
it follows that already the reduced distance must have been better than optimal. E

Algorithmic Bioinformatics 13

Computing the Edit Distance by Dynamic Programming

Instead of recursion, we can use dynamic programming (tabulation)
to compute the edit distance.

Dynamic Programming (DP) is an algorithmic technique
that is applicable when we have a recursive solution
that re-computes solutions to the same subproblem again and again.

With DP, we store solutions to solved sub-problems in a table
and avoid re-computation.

In some cases, this may reduce the running time from exponential to polynomial.

Fibonacci numbers are a prominent example.

Edit distance is another prominent example.

Algorithmic Bioinformatics 14

Computing the Edit Distance by Dynamic Programming

Instead of recursion, we can use dynamic programming (tabulation)
to compute the edit distance.

Dynamic Programming (DP) is an algorithmic technique
that is applicable when we have a recursive solution
that re-computes solutions to the same subproblem again and again.

With DP, we store solutions to solved sub-problems in a table
and avoid re-computation.

In some cases, this may reduce the running time from exponential to polynomial.

Fibonacci numbers are a prominent example.

Edit distance is another prominent example.

Algorithmic Bioinformatics 14

Computing the Edit Distance by Dynamic Programming

Let m := |s| and n := |t|.
Define an (m + 1)× (n + 1) matrix D = (D[i , j]) as follows:
D[i , j]: edit distance between length-i prefix of s and length-j prefix of t.

Initialization of the borders of D (elementary cases according to the recurrence):
D[0, 0] = 0, D[i , 0] = i for 1 ≤ i ≤ m, D[0, j] = j for 1 ≤ j ≤ n.

For i ≥ 1 and j ≥ 1, according to the recurrence:

D[i , j] = min

D[i − 1, j − 1] + [[s[i − 1] 6= t[j − 1]]],

D[i − 1, j] + 1,

D[i , j − 1] + 1.

The result (edit distance between s, t) is found as D[m, n].

Memory and running time: O(mn)

Algorithmic Bioinformatics 15

Computing the Edit Distance by Dynamic Programming

Let m := |s| and n := |t|.
Define an (m + 1)× (n + 1) matrix D = (D[i , j]) as follows:
D[i , j]: edit distance between length-i prefix of s and length-j prefix of t.

Initialization of the borders of D (elementary cases according to the recurrence):
D[0, 0] = 0, D[i , 0] = i for 1 ≤ i ≤ m, D[0, j] = j for 1 ≤ j ≤ n.

For i ≥ 1 and j ≥ 1, according to the recurrence:

D[i , j] = min

D[i − 1, j − 1] + [[s[i − 1] 6= t[j − 1]]],

D[i − 1, j] + 1,

D[i , j − 1] + 1.

The result (edit distance between s, t) is found as D[m, n].

Memory and running time: O(mn)

Algorithmic Bioinformatics 15

Computing the Edit Distance by Dynamic Programming

Let m := |s| and n := |t|.
Define an (m + 1)× (n + 1) matrix D = (D[i , j]) as follows:
D[i , j]: edit distance between length-i prefix of s and length-j prefix of t.

Initialization of the borders of D (elementary cases according to the recurrence):
D[0, 0] = 0, D[i , 0] = i for 1 ≤ i ≤ m, D[0, j] = j for 1 ≤ j ≤ n.

For i ≥ 1 and j ≥ 1, according to the recurrence:

D[i , j] = min

D[i − 1, j − 1] + [[s[i − 1] 6= t[j − 1]]],

D[i − 1, j] + 1,

D[i , j − 1] + 1.

The result (edit distance between s, t) is found as D[m, n].

Memory and running time: O(mn)

Algorithmic Bioinformatics 15

Computing the Edit Distance by Dynamic Programming

Let m := |s| and n := |t|.
Define an (m + 1)× (n + 1) matrix D = (D[i , j]) as follows:
D[i , j]: edit distance between length-i prefix of s and length-j prefix of t.

Initialization of the borders of D (elementary cases according to the recurrence):
D[0, 0] = 0, D[i , 0] = i for 1 ≤ i ≤ m, D[0, j] = j for 1 ≤ j ≤ n.

For i ≥ 1 and j ≥ 1, according to the recurrence:

D[i , j] = min

D[i − 1, j − 1] + [[s[i − 1] 6= t[j − 1]]],

D[i − 1, j] + 1,

D[i , j − 1] + 1.

The result (edit distance between s, t) is found as D[m, n].

Memory and running time: O(mn)

Algorithmic Bioinformatics 15

Example

Edit matrix D for s = andi and t = handy:

h a n d y

0 1 2 3 4 5
a 1
n 2
d 3
i 4

The edit distance between the two strings is 2.

Algorithmic Bioinformatics 16

Example

Edit matrix D for s = andi and t = handy:

h a n d y

0 1 2 3 4 5
a 1 1 1 2 3 4
n 2 2 2 1 2 3
d 3 3 3 2 1 2
i 4 4 4 3 2 2

The edit distance between the two strings is 2.

Algorithmic Bioinformatics 16

Notes on Computing the Edit Distance by DP

The edit matrix D can be filled in row-wise, column-wise or diagonally.

For computing D[i , j], only its direct (left, upper, upper left) neighbors are
needed, so it is sufficient to keep the current and previous row / column /
diagonal in memory.

The memory requirement decreases to O(min(m, n)) or O(m + n),
which is much better than O(mn).

To reconstruct the optimal alignment, the full matrix is required (for now).

Algorithmic Bioinformatics 17

Code: Edit Distance (by Column)

1 def edit_distance(s, t):

2 m, n = len(s), len(t)

3 # Column 0

4 Dc = list(range(m+1)) # Dc: current column in D

5 Dp = [0] * (m+1) # Dp: previous column in D

6 # Iterate over columns j and characters tj in t

7 for j, tj in zip(count(1), t):

8 Dp, Dc = Dc, Dp # swap to recompute Dc

9 Dc[0] = j # row 0: D[0,j] = j

10 # iterate over rows i and characters si in s

11 for i, si in zip(count(1), s):

12 Dc[i] = min(Dp[i - 1] + (si != tj),

13 Dp[i] + 1,

14 Dc[i - 1] + 1)

15 return Dc[m]

Algorithmic Bioinformatics 18

Edit Graph

The cells of the edit matrix D can also be thought of as nodes in a graph.
v◦

0 1 2 3 4

0

1

2

3

v•

Each path v◦ → v• corresponds to an alignment of s and t
(by concatenating the edge labels)

Edit distance: cost of the cheapest path from v◦ to v•.

D[i , j]: cost of the cheapest path v◦ → (i , j).

Algorithmic Bioinformatics 19

Edit Graph

The cells of the edit matrix D can also be thought of as nodes in a graph.
v◦

0 1 2 3 4

0

1

2

3

v•Each path v◦ → v• corresponds to an alignment of s and t
(by concatenating the edge labels)

Edit distance: cost of the cheapest path from v◦ to v•.

D[i , j]: cost of the cheapest path v◦ → (i , j).

Algorithmic Bioinformatics 19

Edit Graph

The cells of the edit matrix D can also be thought of as nodes in a graph.

Definition (global alignment graph, edit graph)

nodes V := {(i , j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {v◦, v•}
edges:

edge label cost

horizontal (i , j)→ (i , j + 1)
[
-
tj

]
1

vertical (i , j)→ (i + 1, j)
[si
-

]
1

diagonal (i , j)→ (i + 1, j + 1)
[si
tj

]
[si 6= tj]

initialization v◦ → (0, 0) ε 0
finalization (m, n)→ v• ε 0

Algorithmic Bioinformatics 20

Number of Paths (Alignments)

Number N(m, n) of paths v◦ → v• in the edit graph of strings of lengths m, n:
Number of possibilities to transform one sequence into the other,
number of global alignments of the two sequences

Computation of N(m, n):

N(0, 0) = 1,

N(m, 0) = 1 for all m,

N(0, n) = 1 for all n,

N(m, n) = N(m − 1, n − 1) + N(m, n − 1) + N(m − 1, n) for m > 1, n > 1.

Algorithmic Bioinformatics 21

Number of Paths (Alignments)

Number N(m, n) of paths v◦ → v• in the edit graph of strings of lengths m, n:
Number of possibilities to transform one sequence into the other,
number of global alignments of the two sequences

Computation of N(m, n):

N(0, 0) = 1,

N(m, 0) = 1 for all m,

N(0, n) = 1 for all n,

N(m, n) = N(m − 1, n − 1) + N(m, n − 1) + N(m − 1, n) for m > 1, n > 1.

Algorithmic Bioinformatics 21

Number of Paths (Alignments)

Number of paths (alignments) N(m, n) for 0 ≤ m, n ≤ 4.

m\n 0 1 2 3 4 . . .

0 1 1 1 1 1 . . .
1 1 3 5 7 9 . . .
2 1 5 13 25 41 . . .
3 1 7 25 63 129 . . .
4 1 9 41 129 321 . . .
...

...
...

...
...

...
. . .

Bound: N(n, n) > 3N(n − 1, n − 1); therefore N(n, n) > 3n.

Asymptotically N(n, n) = Θ
(√

n · (1 +
√

2)2n+1
)
,

i.e., growth of N(n, n) is exponential with base (1 +
√

2)2 ≈ 5.8.

Algorithmic Bioinformatics 22

Number of Paths (Alignments)

Number of paths (alignments) N(m, n) for 0 ≤ m, n ≤ 4.

m\n 0 1 2 3 4 . . .

0 1 1 1 1 1 . . .
1 1 3 5 7 9 . . .
2 1 5 13 25 41 . . .
3 1 7 25 63 129 . . .
4 1 9 41 129 321 . . .
...

...
...

...
...

...
. . .

Bound: N(n, n) > 3N(n − 1, n − 1); therefore N(n, n) > 3n.

Asymptotically N(n, n) = Θ
(√

n · (1 +
√

2)2n+1
)
,

i.e., growth of N(n, n) is exponential with base (1 +
√

2)2 ≈ 5.8.

Algorithmic Bioinformatics 22

Similarity Measures between Strings

Algorithmic Bioinformatics 23

Longest Common Subsequence

Let lcs(s, t) be the length of the longest common subsequence of s and t.

This is a similarity measure; so it cannot be a metric.

We can modify the DP algorithm for the edit distance to compute lcs(s, t).

Maximization instead of minimization!

Insertions, deletions and substitutions contribute 0 to the length.
A matching character contributes 1 to the length.

Consequently, the upper and left borders of the DP matrix are initialized to 0.

The recurrences takes the maximum of three cases.

Algorithmic Bioinformatics 24

Longest Common Subsequence

Let lcs(s, t) be the length of the longest common subsequence of s and t.

This is a similarity measure; so it cannot be a metric.

We can modify the DP algorithm for the edit distance to compute lcs(s, t).

Maximization instead of minimization!

Insertions, deletions and substitutions contribute 0 to the length.
A matching character contributes 1 to the length.

Consequently, the upper and left borders of the DP matrix are initialized to 0.

The recurrences takes the maximum of three cases.

Algorithmic Bioinformatics 24

Longest Common Subsequence

Let lcs(s, t) be the length of the longest common subsequence of s and t.

This is a similarity measure; so it cannot be a metric.

We can modify the DP algorithm for the edit distance to compute lcs(s, t).

Maximization instead of minimization!

Insertions, deletions and substitutions contribute 0 to the length.
A matching character contributes 1 to the length.

Consequently, the upper and left borders of the DP matrix are initialized to 0.

The recurrences takes the maximum of three cases.

Algorithmic Bioinformatics 24

Longest Common Subsequence

Let L[i , j] be the length of the longest common subsequence of s[: i] und t[: j]:

L[i , 0] = 0,

L[0, j] = 0,

L[i , j] = max

L[i − 1, j − 1] + [[s[i − 1] = t[j − 1]]],

L[i − 1, j],

L[i , j − 1].

Running time: O(mn)
Memory requirements: O(min{m, n}) for computing the length only,
but O(mn) for computing the actual longest common subsequence (for now).

Normalization: LCS may be normalized to be in [0, 1] by dividing by max{m, n}.

Algorithmic Bioinformatics 25

Longest Common Subsequence

Let L[i , j] be the length of the longest common subsequence of s[: i] und t[: j]:

L[i , 0] = 0,

L[0, j] = 0,

L[i , j] = max

L[i − 1, j − 1] + [[s[i − 1] = t[j − 1]]],

L[i − 1, j],

L[i , j − 1].

Running time: O(mn)
Memory requirements: O(min{m, n}) for computing the length only,
but O(mn) for computing the actual longest common subsequence (for now).

Normalization: LCS may be normalized to be in [0, 1] by dividing by max{m, n}.

Algorithmic Bioinformatics 25

Longest Common Subsequence

Let L[i , j] be the length of the longest common subsequence of s[: i] und t[: j]:

L[i , 0] = 0,

L[0, j] = 0,

L[i , j] = max

L[i − 1, j − 1] + [[s[i − 1] = t[j − 1]]],

L[i − 1, j],

L[i , j − 1].

Running time: O(mn)
Memory requirements: O(min{m, n}) for computing the length only,
but O(mn) for computing the actual longest common subsequence (for now).

Normalization: LCS may be normalized to be in [0, 1] by dividing by max{m, n}.

Algorithmic Bioinformatics 25

Longest Common Factor (Substring)

We know how to compute the longest common substring of s, t
in O(m + n) time using the suffix tree or suffix array of s#t$.

Alternatively, we can modify the DP approach presented here,
but the running time is much worse with O(mn), so don’t do it!

If you have to:

L[i , j] =

{
L[i − 1, j − 1] + 1, if s[i − 1] = t[j − 1],

0 otherwise.

Then lcf(s, t) = max{L[i , j] | 0 ≤ i ≤ m, 0 ≤ j ≤ n}, not just L[m, n] !

Algorithmic Bioinformatics 26

Longest Common Factor (Substring)

We know how to compute the longest common substring of s, t
in O(m + n) time using the suffix tree or suffix array of s#t$.

Alternatively, we can modify the DP approach presented here,
but the running time is much worse with O(mn), so don’t do it!

If you have to:

L[i , j] =

{
L[i − 1, j − 1] + 1, if s[i − 1] = t[j − 1],

0 otherwise.

Then lcf(s, t) = max{L[i , j] | 0 ≤ i ≤ m, 0 ≤ j ≤ n}, not just L[m, n] !

Algorithmic Bioinformatics 26

Hamming and Edit Similarity

From distance to similarity

Given a distance measure, we can turn it into a similarity measure by

1 normalizing it to the range [0, 1],

2 inverting it by σ = 1− d .

Hamming similarity

σH(s, t) := 1− dH(s, t)/n for |s| = |t| = n

Edit similarity

σ(s, t) := 1− d(s, t)/max{|s|, |t|}

Algorithmic Bioinformatics 27

Hamming and Edit Similarity

From distance to similarity

Given a distance measure, we can turn it into a similarity measure by

1 normalizing it to the range [0, 1],

2 inverting it by σ = 1− d .

Hamming similarity

σH(s, t) := 1− dH(s, t)/n for |s| = |t| = n

Edit similarity

σ(s, t) := 1− d(s, t)/max{|s|, |t|}

Algorithmic Bioinformatics 27

Hamming and Edit Similarity

From distance to similarity

Given a distance measure, we can turn it into a similarity measure by

1 normalizing it to the range [0, 1],

2 inverting it by σ = 1− d .

Hamming similarity

σH(s, t) := 1− dH(s, t)/n for |s| = |t| = n

Edit similarity

σ(s, t) := 1− d(s, t)/max{|s|, |t|}

Algorithmic Bioinformatics 27

Summary

Distance and Similarity Measures on Strings

Hamming distance

q-gram or k-mer distance

Edit (Levenshtein) distance

Visualization of edit operations by global alignment

Edit recurrence and implementation by dynamic programming

Edit graph (edit distance = cost of cheapest path)

Similarity: longest common subsequence

Similarity: longest common factor (substring) – suffix tree!

Hamming and edit similarity

Algorithmic Bioinformatics 28

Possible Exam Questions

How can the distance between strings be measured?

How long does it take to compute the Hamming distance between two strings?

And for the edit distance?

What is an alignment of two strings?

How are alignment and edit distance related?

Compute an optimal global alignment for two given strings.

Give the recursive formulation of edit distance computation.

How can edit distance computation be formulated as a graph problem?

Algorithmic Bioinformatics 29

