

Text Compression Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Properties of the BWT

bwt	sorted suffixes
d	ie BWT lässt sich ohne
d	ie Indizes der sortierten
d	ie LMS-Substrings bilden
d	ie hinterste freie Stelle
d	ie selbe Anordnung
d	ie selbe Länge
d	ie sortierte Reihenfolge der
d	iese ursprüngliche Definition
d	ieser Ansatz hat eine

- In natural language texts, certain combinations of letters appear frequently, e.g. 'die', 'sch', 'tz', or 'ie' (in German).
- Then the BWT contains long runs of the same character, such as ... ddddddddddd..., as shown.
- Informally, repeats in the original text become runs in the BWT.
- Compression techniques have an "easier job" on the BWT.
- Example: run length encoding

Run Length Encoding

 $\mathtt{bwt} = \mathtt{AAAAAAACCCCCGGGGGGAAATT}$

Run length encoding (RLE)

replaces runs of the same character c with a pair (count, c).

Example:

Run length encoded bwt: 7A4C6G3A2T

Run Length Encoding

 $\mathtt{bwt} = \mathtt{AAAAAAACCCCCGGGGGGAAATT}$

Run length encoding (RLE)

replaces runs of the same character c with a pair (count, c).

Example:

Run length encoded bwt: 7A4C6G3A2T

Variations of RLE exist that avoid wasting space for short runs.

bzip2

The tool bzip2 by Julian Seward is based on the BWT. The input is a file (sequence of bytes) and a block size. It processes each block separately, i.e., repeats across blocks are not exploited.

bzip2

The tool bzip2 by Julian Seward is based on the BWT.

The input is a file (sequence of bytes) and a block size.

It processes each block separately, i.e., repeats across blocks are not exploited.

Processing (simplified, abbreviated)

For each block separately:

- **1** Compute the BWT.
- Apply move-to-front (MTF) transformation.
 The resulting sequence has many zeros and small values.
- 3 Apply a variant of run length encoding (RLE)
- 4 Apply Huffman coding:

Represent frequent symbols by short bit sequences, rare symbols by longer ones.

All steps are invertible.

Move-to-Front Encoding (Example tttt\$aaac)

i	list	S [i]	R [i]
0	\$act	t	3
1	t\$ac	t	0
2	t\$ac	t	0
3	t\$ac	t	0
4	t\$ac	\$	1
5	\$tac	а	2
6	a\$tc	а	0
7	a\$tc	а	0
8	a\$tc	С	3

- Current character a is encoded by its index current alphabet list.
- Then *a* is moved to the front of the list.
- Runs of different characters become runs of zeros.
- Small (local) character set in BWT: small numbers
- Encoded sequence has high frequency of small numbers like 0, 1,2, ...

Move-to-Front Decoding

Decode (3,0,0,0,1,2,0,0,3) for $\Sigma = \{\$, \texttt{a}, \texttt{c}, \texttt{t}\}$

Huffman Coding

MTF encoding works best together with frequency-based compression, like Huffman Coding (Huffman trees), which produce optimal prefix-free codes: Represent frequent symbols by short bit sequences, rare symbols by longer sequences.

Huffman Coding

MTF encoding works best together with frequency-based compression, like Huffman Coding (Huffman trees), which produce optimal prefix-free codes: Represent frequent symbols by short bit sequences, rare symbols by longer sequences.

Prefix-free?

No code word is a prefix of another code word. This is essential for correct and easy decoding.

Optimality

Let T be an input string. Let f_c be the relative frequency of character c in T. Let e_c be the chosen bit vector coding for c. Then the average bit length per character is $L(e) := \sum_c f_c \cdot |e_c|$. Among all prefix-free codes $e : \Sigma \to \{0, 1\}^+$, find one with minimal L(e).

Huffman Coding: Algorithm

- Initially each leaf denotes a character c in Σ and has weight f_c .
- Repeat until a single node (with weight 1.0) remains:
 - Pick the two nodes with smallest weights.
 - Connect them by a new node, their common parent, whose weight is the sum of the children's weights.
 - The edge to the left child is labeled 0, the edge to the right child 1.
 - Remove the children from the nodes under consideration.
- The code word (bit sequence) for *c* is spelled by the labels on the path from the root to *c*.

Example: Huffman Coding

Huffman tree for string T = 300012003

Example: Huffman Coding

T = 300012003

code = 011110000011101 (15 bits instead of 18 for fixed-length code)

character	'0'	'1'	'2'	'3'
frequency	5/9	1/9	1/9	2/9
Huffman Code	1	000	001	01
fixed-length code	00	01	10	11

Lempel-Ziv Factorizations

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings:

$$T=f_1f_2\ldots f_z$$

The number of factors (substrings) is typically called z.

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings: $T = f_1 f_2 \dots f_z$

The number of factors (substrings) is typically called z.

Lempel-Ziv 77

The LZ77 factorization is defined as follows: Each factor f_i is either

- **1** a single character that has not appeared in $f_1 \dots f_{i-1}$, or
- **2** the longest substring occurring at least twice in $f_1 \ldots f_i$.

(The possible "overlap" of f_i with itself is desired!)

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings: $T = f_1 f_2 \dots f_z$

The number of factors (substrings) is typically called z.

Lempel-Ziv 77

The LZ77 factorization is defined as follows: Each factor f_i is either

- **1** a single character that has not appeared in $f_1 \dots f_{i-1}$, or
- **2** the longest substring occurring at least twice in $f_1 \ldots f_i$.

(The possible "overlap" of f_i with itself is desired!)

Representation

An LZ77 factor f_i is written (ℓ_i, p_i) with length ℓ_i and starting position p_i . In the single character case $\ell_i = 0$, and p_i is the (ASCII) character code.

LZ77 Example

Each factor f_i is either

- **1** a single character that has not appeared in $f_1 \dots f_{i-1}$, or
- **2** the longest substring occurring at least twice in $f_1 \dots f_i$.
- 0 1
- p: 012345678901234
- s: aacaacabcabaaac

LZ77 Example

Each factor f_i is either

- **1** a single character that has not appeared in $f_1 \dots f_{i-1}$, or
- **2** the longest substring occurring at least twice in $f_1 \ldots f_i$.
- 0 1
- p: 012345678901234
- s: aacaacabcabaaac

a|a|c|aaca|b|cab|aa|ac

LZ77 Example

Each factor f_i is either

- **1** a single character that has not appeared in $f_1 \dots f_{i-1}$, or
- **2** the longest substring occurring at least twice in $f_1 \ldots f_i$.

0 1

- p: 012345678901234
- s: aacaacabcabaaac

a|a|c|aaca|b|cab|aa|ac

(0,a)(1,0)(0,c)(4,0)(0,b)(3,5)(2,0)(2,1)

Computation of the LZ77 Factorization

Using a Suffix Tree of T, assuming constant alphabet size!

Preparation

Annotate each internal node with the smallest leaf number (position) below it. Time: O(n), bottom-up

Factorization

- When starting a new factor at position p, follow a path from the root spelling T[p...], as long as leaves with numbers
- When you are still in the root, insert single character T[p]
- When you are in an inner node, insert (d, s), where d is the current string depth, and s is the smallest leaf number below you.

Time: O(n), one step down per character (for constant alphabet)

Example: aacaacabcabaaac\$

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings: $T = f_1 f_2 \dots f_z$

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings: $T = f_1 f_2 \dots f_z$

Lempel-Ziv 78 Factorization

Let $f_0 := \varepsilon$ (empty string). For $i \ge 1$, if $f_1 \dots f_{i-1} = T[0 \dots (j-1)]$, let f_i be the longest prefix of $T[j \dots]$ such that $f_i = f_k a$ for some k < i and $a \in \Sigma$.

Factorization

A factorization of a string T is a non-overlapping partitioning of T into substrings: $T = f_1 f_2 \dots f_z$

Lempel-Ziv 78 Factorization

Let $f_0 := \varepsilon$ (empty string). For $i \ge 1$, if $f_1 \dots f_{i-1} = T[0 \dots (j-1)]$, let f_i be the longest prefix of $T[j \dots]$ such that $f_i = f_k a$ for some k < i and $a \in \Sigma$.

Representation

An LZ78 factor f_i is written (k_i, a_i) with index $0 \le k_i < i$ and character $a_i \in \Sigma$. A single character b is thus written (0, b).

LZ78 Example

Let $f_0 := \varepsilon$ (empty string). For $i \ge 1$, if $f_1 \dots f_{i-1} = T[1 \dots (j-1)]$, let f_i be the longest prefix of $T[j \dots]$ such that $f_i = f_k a$ for some k < i and $a \in \Sigma$.

- 0 1
- p: 012345678901234
- s: aacaacabcabaaac

LZ78 Example

Let $f_0 := \varepsilon$ (empty string). For $i \ge 1$, if $f_1 \dots f_{i-1} = T[1 \dots (j-1)]$, let f_i be the longest prefix of $T[j \dots]$ such that $f_i = f_k a$ for some k < i and $a \in \Sigma$.

0 1 p: 012345678901234

s: aacaacabcabaaac

|a|ac|aa|c|ab|ca|b|aaa|c

- i: 012 3 45 6 78
- ka: 0a1c 1a 0c1b 4a 0b3a 4.

Computation of the LZ78 Factorization

Using a trie of existing factors, assuming constant alphabet size!

Preparation

Initialize a trie consisting only of the root; mark the root as factor i = 0 (empty string).

Factorization

- When starting a new factor f_i at text position p, follow a path from the root spelling T[p...] as far as possible.
- Attach a new leaf (marked i) to the current node (marked with some k < i), with an edge labeled a := T[p + d] where d is the current string depth in the trie.
- Output (k, a)

Time: O(n), one step down per character (for constant alphabet)

Example

0 1

- p: 012345678901234
- s: aacaacabcabaaac

|a|ac|aa|c|ab|ca|b|aaa|c i: 0 1 2 3 4 5 6 7 8 ka: 0a1c 1a 0c1b 4a 0b3a 4.

Remarks on LZ factorizations

- LZ77 and LZ78 invented by Lempel and Ziv in 1977 and 1978 (also LZ1, LZ2)
- Simplified and streamlined description given here!
- Many variations exist: In fact, LZ77 uses a sliding window and forgets text to the far left
- We assume constant alphabet (finding correct outgoing edge in O(1) time); more complex algorithms needed for poly(n) alphabet.
- Still, LZ factorizations are the foundation for many compression methods: ZIP, GIF, PNG, ...
- Patent issues (till 2004) with LZ78, but LZ77 was always patent-free

Summary

Compression

- Why the BWT is useful for compression
- Run Length Encoding
- Move-to-Front encoding
- Huffman coding
- LZ77 factorization and computation via suffix tree
- LZ78 factorization and computation via simple trie

Note

Finding good application-specific compression algorithms is valuable: https://www.illumina.com/company/news-center/feature-articles/
illumina-acquires-enancio-s-compression-software.html

Exam Questions

- Why can the BWT be easier to compress than the input string?
- What is run length encoding?
- Explain Move-to-Front encoding. Apply it to an example.
- Explain Huffman coding.
- Define the LZ77 factorization.
- How do you efficiently compute the LZ77 factorization?
- Define the LZ78 factorization.
- How do you efficiently compute the LZ78 factorization?
- What if the alphabet is not of constant size, but grows as e.g., √n: How does the time of the LZ77 and LZ78 factorization algorithms change?

