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Overview

Previous Lectures

Ukkonen’s algorithm: linear time suffix tree construction

Suffix links

Kasai’s algorithm: linear time LCP array construction

Today

Direct linear time suffix array construction using induced sorting
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Suffix trees and suffix arrays

Suffix tree for the string T = cabca$.
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A suffix array of a string s$ with |s$| = n is defined as the permutation pos of
{0, .., n − 1} that represents the lexicographic ordering of all suffixes of s$.
pos = [5, 4, 1, 2, 3, 0].
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Definition of L-/S-positions

Definition (L-position, S-position)

Let s$ be a string of length n with sentinel, such that s[n − 1] = $.
Let 0 ≤ p < n − 1 be a position in the text. We say,

p is an L-position (L means larger), if s[p . . .] > s[p + 1 . . .],

p is an S-position (S means smaller), if s[p . . .] < s[p + 1 . . .],

The position of the sentinel n − 1 is defined as S-position.

(Note that no two suffixes can be identical.)

0.........1.........2.

Position p 0123456789012345678901

Sequence s gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS
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Computing the L-/S-positions in the type array

The type information can be computed in linear time
with a scan through the text from right to left:

1 def compute_types(T):

2 n = len(T)

3 typ = [’?’] * (n-1) + [’S’]

4 for i in range(n-2, -1, -1):

5 typ[i] = ’L’ if T[i] > T[i+1] else \

6 ’S’ if T[i] < T[i+1] else typ[i+1]

7 return typ

In a real implementation, we use a bit vector (0/1) to represent the types.
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Definitions: LMS position / interval / substring

Definition (LMS-interval, LMS-substring)

S-positions located to the right of an L-position are called LMS positions
(for leftmost S position).

A pair of positions [i , j ] is called LMS interval of s, if either

i < j and both i and j are LMS-positions and there are no LMS-positions between
i and j , or
i = j = n − 1.

Each LMS interval [i , j ] is associated with its LMS substring s[i . . . j ].

Observations

Position n − 1 with the sentinel is always an LMS-position.

Whether an S-position is an LMS-position can be determined in constant time,
looking up its type and the type to the left in the typearray.

Algorithmic Bioinformatics 8



Example: type array, LMS substrings

0 1 2

position p 0123456789012345678901

sequence s gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS

LMS? * * * * * * *

LMS-substr cctta atta acgc $

aaca atta ccta$
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Overview of Induced Sorting

Notation

s is the input sequence,

pos is the desired output suffix array of s.

Induced sorting

Scan s to compute the type array

Scan type to find all LMS positions in s

Phase I - Sort suffixes at LMS positions (complex; recursive)

Phase II - Sort all remaining suffixes of s (easy)

Output pos
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Code: Overview

1 def sais_main(T, alphabet_size ):

2 # T: text (bytes , numpy array , not str!), T[n-1]=0

3 # alphabet_size , 1 <= T[i] < alphabet_size for all i < n-1

4

5 pos = np.empty(len(T), dtype=np.int64)

6 # B[a]: total number of characters in T that are <= a

7 B = count_cumulative_characters(T, alphabet_size)

8 types = compute_types(T)

9 lms_positions = find_lms_positions(types)

10 # Phase 1 sorts lms_positions lexicographically in-place ,

11 # may recurse into sais_main () with a reduced text.

12 phase1(T, B, types , lms_positions , pos)

13 # Phase 2 sorts all suffixes from correctly sorted LMS.

14 phase2(T, B, types , lms_positions , pos)

15 return pos
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Code: Initialization, buckets and types

1 def count_cumulative_characters(T, alphabet_size ):

2 # B[a]: total number of characters in T that are <= a

3 B = np.zeros(alphabet_size , dtype=np.uint64)

4 for a in T:

5 B[a] += 1

6 for a in range(1, alphabet_size ):

7 B[a] += B[a-1]

8 return B

1 def compute_types(T):

2 # Compute position types (SMALLER=0, LARGER =1) for T

3 n = len(T)

4 types = np.zeros(n, dtype=np.uint8) # types[n-1] = SMALLER

5 for i in range(n-2, -1, -1):

6 types[i] = LARGER if T[i] > T[i+1] else \

7 SMALLER if T[i] < T[i+1] else types[i+1]

8 return types
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Code: Initialization, LMS positions

1 def find_lms_positions(types):

2 n = len(types)

3 # count the number of LMS positions first

4 m = 0

5 for p in range(1, n):

6 m += (types[p] == SMALLER and types[p-1] == LARGER)

7 # allocate array of just the correct size m

8 lms_positions = np.empty(m, dtype=np.int64)

9 # now fill the array with the actual LMS positions

10 m = 0

11 for p in range(1, n):

12 if types[p] == SMALLER and types[p-1] == LARGER:

13 lms_positions[m] = p

14 m += 1

15 return lms_positions
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Code: Overview again

1 def sais_main(T, alphabet_size ):

2 # T: text (bytes , numpy array , not str!), T[n-1]=0

3 # alphabet_size , 1 <= T[i] < alphabet_size for all i < n-1

4

5 pos = np.empty(len(T), dtype=np.int64)

6 # B[a]: total number of characters in T that are <= a

7 B = count_cumulative_characters(T, alphabet_size)

8 types = compute_types(T)

9 lms_positions = find_lms_positions(types)

10 # Phase 1 sorts lms_positions lexicographically in-place ,

11 # may recurse into sais_main () with a reduced text.

12 phase1(T, B, types , lms_positions , pos)

13 # Phase 2 sorts all suffixes from correctly sorted LMS.

14 phase2(T, B, types , lms_positions , pos)

15 return pos
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Phase II
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Sorting the non-LMS suffixes

Let’s start with Phase II (Phase I uses elements of Phase II):

Definition (Bucket)

A maximal interval of the suffix array pos,
in which the referenced suffixes start with the same character,
is called a bucket.

There are as many buckets as characters in the used alphabet,
plus the one for the sentinel character.
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Sorting the non-LMS suffixes

Lemma

Within each bucket of the suffix array, the L-positions appear before the S-positions.

Proof

Let p be an S-position, and let q be an L-position, let s[p] = s[q] = b ∈ Σ, so both p
and q are in the b-bucket. Then the suffix p + 1 is larger than suffix p, and suffix
q + 1 is smaller than suffix q. Because s[p] = s[q], the order of p vs. q is determined
by p + 1 vs. q + 1, but q + 1 comes before p + 1 in the lexicographic order.

Illustration

Let a < b < c ; suffix q is b+a, whereas p is b+c :

q p

bbb...a < bbb...c

L S
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Sorting the non-LMS suffixes

Lemma

Within each bucket of the suffix array, the L-positions appear before the S-positions.

Bucket	 $	 a	 c	 t	

L	 S	 L	 S	 L	 S	 L	 S	
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Sorting the non-LMS suffixes

Idea

Use the already sorted LMS-positions (a subset of the S-positions)
to sort the L-positions correctly, and then

use the sorted L-positions to sort all S-positions.

This is why the algorithm is called induced sorting:
The order of one type of suffixes completely induces the ordering of the others.
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Preparing the Suffix Array

Step (1)

Initialize pos with unknown at each position

Mark the beginning and end of each bucket by pointers

Write the sorted LMS-positions (phase I) at the end of their respective buckets.

0 1 2

position p 0123456789012345678901

sequence s gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS

LMS? * * * * * * *

rank r | 0| 1 2 3 4 5 6| 7 8 9 10 11 12|13 14|15 16 17 18 19 20 21|

bucket | $| a a a a a a| c c c c c c| g g| t t t t t t t|

pos/ |21| . . 5 14 11 8| . . . . 17 1| . .| . . . . . . .|
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Sorting the L-positions (Induced Sorting)

Step (2)

Iterate through pos from left to right with index r .

If pos[r ] is unknown, skip index r .

Otherwise, look at pos[r ]− 1:

1 If pos[r ]− 1 is an L-position, enter it at the first free position in its bucket.
2 If pos[r ]− 1 is an S-position, skip index r .

Result

All L-positions are entered in the suffix array in correct order.
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Example: Sorting the L-positions
0 1 2

position p 0123456789012345678901

sequence s gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS

LMS? * * * * * * *

rank r | 0| 1 2 3 4 5 6| 7 8 9 10 11 12|13 14|15 16 17 18 19 20 21|

bucket | $| a a a a a a| c c c c c c| g g| t t t t t t t|

pos |21| . . 5 14 11 8| . . . . 17 1| . .| . . . . . . .|

|^S|vL | | | |

pos |21|20 . 5 14 11 8| . . . . 17 1| . .| . . . . . . .|

| |^L | | |vL |

pos |21|20 . 5 14 11 8| . . . . 17 1| . .|19 . . . . . .|

| | ^S | | | vL |

pos |21|20 . 5 14 11 8| . . . . 17 1| . .|19 4 . . . . .|

| | ^S | | | vL |

pos |21|20 . 5 14 11 8| . . . . 17 1| . .|19 4 13 . . . .|

| | ^S | | | vL | ... ...

pos |21|20 . 5 14 11 8| 7 . . . 17 1|16 0|19 4 13 10 3 12 9|



Sorting the S-positions (Induced Sorting)

Step (3)

1 Remove all the S-positions from pos, except $.

2 Iterate through pos from right to left with index r .

3 If pos[r ] is unknown, skip index r .

4 Otherwise, look at pos[r ]− 1:

If pos[r ]− 1 is an S-position, enter it at the rightmost free position in its bucket.
If pos[r ]− 1 is an L-position, skip index r .

Result

All S-positions are entered in the suffix array in correct order.
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Example: Sorting the S-positions (Induced Sorting)
0 1 2

position p 0123456789012345678901

sequence s gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS

LMS? * * * * * * *

rank r | 0| 1 2 3 4 5 6| 7 8 9 10 11 12|13 14|15 16 17 18 19 20 21|

bucket | $| a a a a a a| c c c c c c| g g| t t t t t t t|

pos(2) |21|20 . 5 14 11 8| 7 . . . 17 1|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . . 8| 7 . . . . .|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 . . . . .|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 . . . . 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 . . . 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 . . 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 . 1 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . . . 11 8| 7 17 1 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . . 14 11 8| 7 17 1 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 . 6 14 11 8| 7 17 1 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 5 6 14 11 8| 7 17 1 15 18 2|16 0|19 4 13 10 3 12 9|

pos |21|20 5 6 14 11 8| 7 17 1 15 18 2|16 0|19 4 13 10 3 12 9|
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Summary and Analysis of Phase II

Phase II:

1 Enter sorted LMS suffixes into pos, set bucket pointers

2 Sort L-suffixes based on sorted LMS-suffixes (induced sorting)

3 Sort S-suffixes based on sorted L-suffixes (induced sorting)

Running Time Analysis

Step (1) can be done in linear time.

Step (2) and (3) each do a linear scan through the suffix array in linear time.

⇒ Phase II takes linear time.

Correctness?
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Correct Sorting of L-Positions

Lemma: Correctness of Step (2)

Assuming correctly ordered LMS-positions in each bucket, then after Step (2),
all L-positions can be found at their correct positions.

Proof idea

If p is a text position with rank r in pos and p − 1 is a L-position,
then p − 1 has a rank r ′ with r ′ > r by definition of an L-position.

This assures that each L-position p − 1 will

1 be induced by an LMS- or L-position p
2 be induced by a position further to the left

Complete proof by induction:
Show that the first k LMS- and L-positions all appear in the correct order.
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Correct Sorting of S-Positions

Lemma: Correctness of Step (3)

Assuming correctly ordered L-positions in each bucket, then after step (3), all positions
can be found at their correct positions.

Proof idea

Let p be a text position with rank r in pos and p − 1 is a S-position, then p − 1
has a rank r ′ with r ′ < r (by definition of an S-position).

This assures that each S-position p − 1 will be induced by a position p further to
the right.

Complete proof by induction (in k):
Show that the last k positions all appear in the correct order.
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Code: Phase II

1 def phase2(T, B0 , types , lms , pos):

2 # T: Text , B0: cumulative bucket sizes , types: type array

3 # lms: sorted or unsorted LMS positions

4 # pos: suffix array (output)

5

6 # 0. Initialize pos by inserting LMS positions ,

7 B = B0.copy() # working copy of C, to be modified

8 initialize_pos_from_lms(T, B, lms , pos)

9 # 1. Do a left -to-right induction scan for L-positions ,

10 B[:] = B0[:] # re-set B to a clean working copy of C

11 induce_L_positions(T, B, types , pos)

12 # 2. Do a right -to-left induction scan for S-positions.

13 B[:] = B0[:] # re-set B to a clean working copy of C

14 induce_S_positions(T, B, types , pos)

15 # Result: pos has been modified as desribed.
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Code: Phase II, Initialization

1 def initialize_pos_from_lms(T, B, lms , pos):

2 pos [:] = -1 # set everything to "unknown"

3 # Insert LMS positions at right end of their buckets ,

4 # right -to-left , so we know where to start in each bucket.

5 for p in lms [:: -1]:

6 a = T[p] # character determines the bucket

7 B[a] -= 1

8 pos[B[a]] = p
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Code: Phase II, L-positions

1 def induce_L_positions(T, B, types , pos):

2 # Left -to-right scan: Induce L-positions from LMS -positions

3 n = len(T)

4 for r in range(n):

5 p = pos[r]

6 if p <= 0: continue # unknown or 0 -> skip

7 if types[p-1] == SMALLER: continue # skip S positions

8 a = T[p-1] # determine bucket

9 pos[B[a-1]] = p-1

10 B[a-1] += 1
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Code: Phase II, S-positions

1 def induce_S_positions(T, B, types , pos):

2 # Right -to-left scan: Induce S-positions from L-positions

3 n = len(T)

4 for r in range(n-1, -1, -1):

5 p = pos[r]

6 if p == 0: continue # skip position 0 (no p-1)

7 if types[p-1] == LARGER: continue # skip L positions

8 a = T[p-1] # determine bucket

9 B[a] -= 1

10 pos[B[a]] = p-1
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Phase I
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Idea for Phase 1

Goal (hard)

Sort the LMS suffixes (i.e., suffixes starting at LMS positions)

Plan

Only sort the LMS substrings (up to next LMS position):
shorter total length (O(n) instead of O(n2)).

Expand alphabet and reduce text length (LMS substring 7→ character),
keeping lexicographic order of LMS substrings (“lexicographic naming”).

If all LMS substrings are distinct,
we have also sorted the LMS suffixes, done!

If there are equal LMS substrings,
compute suffix array of reduced text (recursively with SAIS),
use that to infer correct order of LMS suffixes.
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Example: Alphabet Expansion and Text Reduction

0 1 2

position p 0123456789012345678901

text T gccttaacattattacgccta$

type LSSLLSSLSLLSLLSSLSSLLS

LMS? * * * * * * *

LMS-substr cctta atta acgc $

aaca atta ccta$

p’ 0 1 2 3 4 5 6

red. text R E A C C B D $

r’ 0 1 2 3 4 5 6

pos’[r’] 6 1 4 3 2 5 0 reduced suffix array

RT[pos’[r’]] 21 5 14 11 8 17 1 sorted LMS-positions
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Overview with Recursion

1) Phase 1: Identify and sort LMS substrings
2) Reduce text by lexicographic naming
    A=aaca, B=acgc, ...
        E A C C B D $

Suffix array of
reduced text
[6 1 4 3 2 5 0]

3) Translate into sorted
     LMS suffixes
4) Phase 2: Use sorted LMS suffixes
     to induce order of non-LMS suffixes

1)
2)

3)
4)

Input

Output

1)
2)

3)
4)

Input

Output

1)
2)

3)
4)

Input

Output

Algorithmic Bioinformatics 35



Achieving Phase I in Linear Time

Questions

1 How to sort the LMS substrings in linear time?

2 How to compare and name LMS substrings in linear time?

3 How to obtain order of LMS suffixes after recursive call ?

Sorting LMS Substrings

Surprisingly, it can be done by another run of Phase II:

Enter unsorted LMS-positions into correct buckets of pos

Induce order of L-positions based on unsorted LMS-positions

Induce order of S-positions based on sorted S-positions

Result: Suffixes at LMS positions correctly sorted up to next LMS position:

... SSSSLLLLLLS ...

... * * ...
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Achieving Phase I in Linear Time

Text Reduction and Lexicographic Naming

1 Sort LMS substrings (phase 2) into pos (previous slide)

2 Extract partially sorted LMS positions from pos

3 Compare LMS substrings in lexicographic order, $ first,
assign new “name” (number) if different from previous string.

4 In parallel, build new reduced text R from names at LMS positions,
build map RT from R-positions to T -LMS-positions.

5 If all LMS substrings are unique, we already have sorted LMS suffixes.
Otherwise recurse on R (next slide) to obtain pos′.

6 Total time without recursion: O(n).
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Achieving Phase I in Linear Time

Recursion

Situation: We have

paritally sorted LMS suffixes lms,

reduced text R,

map RT from R-positions to T -LMS-positions.

Left to do:

1 Recursively compute pos′ of R by calling SAIS(R).

2 Overwrite lms by correct order of T is RT[pos′[0]], RT[pos′[1]], . . ..
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Code: Phase I, Overview

1 def phase1(T, B, types , lms_positions , pos):

2 # T: text; B: cumulative charachter counts

3 # lms_positions: LMS positions in ANY ORDER

4 # pos: uninitialized , used to sort LMS positions

5 alphabet_size = len(B)

6 phase2(T, B, types , lms_positions , pos)

7 # Compute reduced text from LMS substrings

8 (R, reduced_alphabet_size , position_map) \

9 = reduce_text(T, alphabet_size , types , pos , lms_positions)

10 # If there are equal LMS substrings , recurse on reduced text

11 if len(R) != reduced_alphabet_size:

12 reduced_pos = sais_main(R, reduced_alphabet_size)

13 # Re-map reduced_pos to original text positions;

14 # these are the lms_positions in lexicographic order ,

15 for i, redp in enumerate(reduced_pos ):

16 lms_positions[i] = position_map[redp]
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Code: Phase I, Text Reduction (Lexicographic Naming)

1 def reduce_text(T, alphabet_size , types , pos , lms_positions ):

2 n, m = len(pos), len(lms_positions)

3 names = np.full(n, -1, dtype=np.int64) # the names

4 last_lms = n-1; names[last_lms] = 0 # sentinel at n-1

5 reduced_alphabet_size = 1; j = 0

6 # go through the suffixes lexicographically , w/o sentinel

7 for r in range(1, n):

8 p = pos[r] # if not LMS , skip it:

9 if p==0 or types[p]!= SMALLER or types[p -1]!= LARGER:

10 continue

11 lms_positions[j]=p; j+=1 # write sorted LMS positions

12 if lms_substrings_unequal(T, types , last_lms , p):

13 reduced_alphabet_size += 1

14 names[p] = reduced_alphabet_size - 1

15 last_lms = p
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Code: Phase I, Comparison of LMS Substrings

1 def lms_substrings_unequal(T, types , p1 , p2):

2 """ Return True iff LMS substrings at p1 , p2 in T differ """

3 is_lms_p1 = is_lms_p2 = False

4 while True:

5 if T[p1] != T[p2]: return True # unequal

6 if types[p1] != types[p2]: return True # unequal

7 if is_lms_p1 and is_lms_p2: return False # equal

8 p1 +=1; p2 += 1 # look at next positions

9 # check if both or only one LMS substring ends now

10 is_lms_p1 = types[p1]== SMALLER and types[p1 -1]== LARGER

11 is_lms_p2 = types[p2]== SMALLER and types[p2 -1]== LARGER

12 if is_lms_p1 and is_lms_p2: continue # final test

13 if is_lms_p1 or is_lms_p2: return True # unequal
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Running Time Analysis

Observations about the recursion

The alphabet size can grow, but is bounded by n
(e.g. a, c, g, t expands to A–E).

After each reduction step for a sequence of length n (including the sentinel),
the new sequence has at most length bn/2c (again including the sentinel).

Find a bound on the running time T (n) for these three parts:

1 Phase I without recursion: ≤ c1 n

2 Recursive call: ≤ T (n/2)

3 Phase II: ≤ c2 n

Claim

T (n) = O(n), i.e., SAIS takes linear time in n = |T |.
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Running Time Analysis (Proof)

Proof of Claim T (n) = O(n)

1 Phase I without recursion: ≤ c1 n

2 Recursive call: ≤ T (n/2)

3 Phase II: ≤ c2 n

Let C := c1 + c2. Then T (1) = O(1), and thus

T (n) ≤ c1 n + T (n/2) + c2 n

= C n + T (n/2)

= C n + C n/2 + T (n/4)

≤ C n (1 + 1/2 + 1/4 + . . . ) + T (1)

= 2C n +O(1) = O(n). q.e.d.
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Summary

Linear suffix array construction by induced sorting (SAIS)

1 Sorted LMS-suffixes can be used to induce sorting of L-suffixes.

2 Sorted L-suffixes can be used to induce sorting of S-suffixes.

3 Sort LMS-suffixes by sorting LMS-substrings first
(how? induced sorting on unsorted LMS-positions)

4 Reduce text by lexicographic naming of LMS-substrings

5 If equal LMS-substrings exist, recurse on reduced text

6 LMS-order of original text is obtained from suffix array of reduced text
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Possible exam questions

Explain the principle of induced sorting.

Why are L-positions on the left and S-positions on the right of each bucket?

What is the goal of the text reduction step?

Conduct the first iteration of induced sorting for a small example string.

Explain why the induced sorting algorithm has linear running time.
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