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Suffix trees and suffix arrays

Suffix tree for the string T = cabca$.
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A suffix array of a string s$ with |s$| = n is defined as the permutation pos of
{0, .., n − 1} that represents the lexicographic ordering of all suffixes of s$. Here
pos = [5, 4, 1, 2, 3, 0].
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Motivation for Suffix Arrays

High memory requirements for suffix tree (O(n) ≈ 20n bytes)

With alphabetically sorted outgoing edges:
Sequence of leaf numbers
= starting positions of lexicographically sorted suffixes

Array: O(4n) bytes (for 32-bit integers, n < 232)

Represents only the leaf level of the suffix tree

Representation of tree structure with additional arrays

Some questions can be solved directly with cache-efficient algorithms
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Example of a Suffix Array

Notation: p for text positions, r for lexicographic ranks.
In a auffix array pos[r ] is the text position where the r -th smallest suffix starts.

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T = m i i s s i s s i p p i i $

r = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

pos = 13 12 11 1 8 5 2 0 10 9 7 4 6 3

︸︷︷︸
$

︸ ︷︷ ︸
i

︸︷︷︸
m
︸ ︷︷ ︸

p
︸ ︷︷ ︸

s

We may partition the suffixes into “buckets” according to their first letter.
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Construction of Suffix Arrays

Three possibilities

1 from the suffix tree by scanning the leaves, in O(n) time
Disadvantage: high memory consumption for intermediate tree

2 directly by some standard sorting algorithm

1 def build_suffixarray_naive(T):

2 suffixes = lambda p: T[p:]

3 return sorted(range(len(T)), key=suffixes)

Disadvantage: Running time O(n2 log n)

3 directly by an efficient linear-time algorithm (later)
Disadvantage: complicated algorithm

Algorithmic Bioinformatics 6



Construction of Suffix Arrays

Three possibilities

1 from the suffix tree by scanning the leaves, in O(n) time
Disadvantage: high memory consumption for intermediate tree

2 directly by some standard sorting algorithm

1 def build_suffixarray_naive(T):

2 suffixes = lambda p: T[p:]

3 return sorted(range(len(T)), key=suffixes)

Disadvantage: Running time

O(n2 log n)

3 directly by an efficient linear-time algorithm (later)
Disadvantage: complicated algorithm

Algorithmic Bioinformatics 6



Construction of Suffix Arrays

Three possibilities

1 from the suffix tree by scanning the leaves, in O(n) time
Disadvantage: high memory consumption for intermediate tree

2 directly by some standard sorting algorithm

1 def build_suffixarray_naive(T):

2 suffixes = lambda p: T[p:]

3 return sorted(range(len(T)), key=suffixes)

Disadvantage: Running time O(n2 log n)

3 directly by an efficient linear-time algorithm (later)
Disadvantage: complicated algorithm

Algorithmic Bioinformatics 6



Construction of Suffix Arrays

Three possibilities

1 from the suffix tree by scanning the leaves, in O(n) time
Disadvantage: high memory consumption for intermediate tree

2 directly by some standard sorting algorithm

1 def build_suffixarray_naive(T):

2 suffixes = lambda p: T[p:]

3 return sorted(range(len(T)), key=suffixes)

Disadvantage: Running time O(n2 log n)

3 directly by an efficient linear-time algorithm (later)
Disadvantage: complicated algorithm

Algorithmic Bioinformatics 6



Search with suffix arrays

Definitions

Pattern P ∈ Σm and text T ∈ Σn

Define

L := min
[
{r |P ≤ T [pos[r ] . . .]} ∪ {n}

]
,

R := max
[
{r |P ≥ T [pos[r ] . . . pos[r ] + |P|]} ∪ {−1}

]
.

All suffixes in the interval [L,R] start with P

P occurs in T if (and only if) R ≥ L

Searching in suffix array ⇐⇒ determining [L,R]

Use two binary searches to determine [L,R].
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Example: Binary search in Suffix Arrays

Search for “is”, then for “sp”.

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T = m i i s s i s s i p p i i $

r = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

pos = 13 12 11 1 8 5 2 0 10 9 7 4 6 3
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Running Time for Searching

1 Decision problem
As we have seen, the running time is O(m log n).

2 How often does P occur in T?
Same as above, because the number of occurrences is k = R − L + 1.

3 Where does P occur in T?
Once the interval [L,R] is known, the start positions can be found
by scanning through the interval in additional O(k) time.

Note: With a different approach, the factor log n can be saved!
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Motivation: Enhanced Suffix Arrays

Can we use suffix arrays just like suffix trees?

Not like defined so far. . . . We need more structure!

Enhancing suffix arrays with Longest Common Prefix (LCP) arrays
to represent the tree structure above the leaf level

Applications of enhanced suffix arrays

Longest repeated substring
Shortest unique substring
Longest common substring
Maximal unique matches (MUMs)
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Longest Common Prefix (LCP) arrays
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LCP Array by Example

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T = m i i s s i s s i p p i i $

r = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

pos = 13 12 11 1 8 5 2 0 10 9 7 4 6 3
lcp = -1 0 0 0 0 -1︸︷︷︸

$

︸ ︷︷ ︸
i

︸︷︷︸
m
︸ ︷︷ ︸

p
︸ ︷︷ ︸

s

lcp represents longest common prefixes
of lexicographically adjacent suffixes (looking left).

Algorithmic Bioinformatics 12



LCP Array

Definition: longest common prefix array

Let T ∈ Σn be a text and let pos be the corresponding suffix array.
We define lcp to be an array of length (n + 1) such that

lcp[r ] =

{
−1 if r = 0 or r = n,

lcp
(
T [pos[r − 1] . . .],T [pos[r ] . . .]

)
otherwise,

where
lcp(s, t) := max

{
i ∈ N0 | s[. . . i − 1] = t[. . . i − 1]

}
.

Terminology

A suffix array plus (an) auxiliary array(s) like lcp is called enhanced suffix array.
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Naive Construction of LCP Array

1 def lcp_naive(pos ,T):

2 lcp = [-1] # first -1 (at index 0)

3 for r in range(1, len(T)):

4 # compare suffix starting at pos[r-1]

5 # to suffix starting at pos[r]

6 x = 0

7 while T[pos[r-1]+x] == T[pos[r]+x]:

8 x += 1 # cannot run off the string (sentinel !)

9 lcp.append(x)

10 lcp.append (-1) # trailing -1 (at index n)

11 return lcp

Running time: worst case O(n2), repetitive texts are bad.
Will be improved in a few minutes by Kasai’s algorithm.
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Applications of Enhanced Suffix Arrays
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Longest Repeated Substring (by Enhanced Suffix Array)

Example

The longest repeated substring in cabca is ca.

Question

How do we find longest repeated substring using the suffix array and LCP array?

Answer

Just look for maximum value in LCP array

Suffix array at that position tells where the substring starts

Running time O(n)

Note that this algorithm is much simple than using the suffix tree.
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Example: Longest Repeated Substring via ESA

r pos[r ] lcp[r ] T [pos[r ] :]
0 13 - $

1 12 0 i$

2 11 1 ii$

3 1 2 iississippii$

4 8 1 ippii$

5 5 1 issippii$

6 2 4 ississippii$

7 0 0 miississippii$

8 10 0 pii$

9 9 1 ppii$

10 7 0 sippii$

11 4 2 sissippii$

12 6 1 ssippii$

13 3 3 ssissippii$

Algorithmic Bioinformatics 17



Shortest Unique Substring (Enhanced Suffix Array)

Idea

For every suffix of T = s$, determine the shortest prefix that is unique; i.e. for
each i , determine the smallest j such that T [i . . . j ] is a unique substring of T .

This is easy using the LCP array:

j = i + max{lcp[r ], lcp[r + 1]}.

where pos[r ] = i .

However, we need to exclude cases where j = n − 1,
meaning that T [i . . . j ] is only unique due to the sentinel T [n − 1] = $.
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Code: Shortest Unique Substring

1 def shortest_unique_substring(pos , lcp):

2 n = len(pos)

3 # full text (without sentinel) is always unique

4 best_i = 0

5 best_j = n-1

6 for r in range(len(pos)):

7 i = pos[r]

8 j = i + max(lcp[r], lcp[r+1]) + 1

9 if j == n: continue

10 if (j-i) < (best_j -best_i ):

11 best_i , best_j = i, j

12 return best_i , best_j

Running time: O(n)
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Longest Common Substrings (using Suffix Arrays)

Problem

Given two strings s, t, find their longest common substring.

Example

Let s = ANANAS and t = BANANA, then lcs(s, t) = ANANA.

Idea

Build generalized enhanced suffix array of s and t,
i.e. build the enhanced suffix array T = s$1t$2.

Common substring → consecutive positions in suffix array

Length given by LCP value

Distinguish: repeat in one string vs. common substring
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Code: Longest Common Substring

1 def longest_common_substring(s,t):

2 T = s + ’#’ + t + ’$’

3 pos , lcp = sa_and_lcp(T)

4 lcs = ’’

5 for r in range(1, len(pos)):

6 # do both suffixes start in the same string => skip r

7 if (pos[r] <= len(s) and pos[r-1] <= len(s)) \

8 or (pos[r] > len(s) and pos[r-1] > len(s)):

9 continue

10 if lcp[r] > len(lcs):

11 lcs = T[pos[r]:pos[r]+lcp[r]]

12 return lcs

Running time: O(n), assuming setting lcs in line 11 is O(1)
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Maximal Unique Matches (MUMs)

Definitions

Let two strings s, t ∈ Σ∗ be given.

A string u is a unique match if it occurs exactly once in s and t, respectively.

A unique match u is maximal if there is no a ∈ Σ
such that au or ua is a unique match.

Significance of MUMs

MUMs can be used as anchor points for aligning long sequences.

Genome A

Genome B

Algorithmic Bioinformatics 22



Maximal Unique Matches (MUMs)

Definitions

Let two strings s, t ∈ Σ∗ be given.

A string u is a unique match if it occurs exactly once in s and t, respectively.

A unique match u is maximal if there is no a ∈ Σ
such that au or ua is a unique match.

Significance of MUMs

MUMs can be used as anchor points for aligning long sequences.

Genome A

Genome B
Algorithmic Bioinformatics 22



Idea: Computing MUMs using Enhanced Suffix Arrays

Reuse from longest common substrings:

Build generalized enhanced suffix array of s and t,
i.e. build the enhanced suffix array T = s$1t$2.

Common substring → consecutive positions in suffix array

Length given by LCP value

Distinguish: repeat in one string vs. common substring

Additional considerations

Ensure hits are unique: “isolated” local maxima in LCP table

Check that we cannot extend to the left
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Example: Computing MUMs
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Code: Computing MUMs

1 def compute_mums(s,t):

2 T = s + ’#’ + t + ’$’

3 pos , lcp = sa_and_lcp(T)

4 for r in range(1, len(pos)):

5 p1, p2 = pos[r-1], pos[r]

6 if (p1 <= len(s)) and (p2 <= len(s)):

7 continue

8 if (p1 > len(s)) and (p2 > len(s)):

9 continue

10 if (lcp[r-1] >= lcp[r]) or

11 (lcp[r+1] >= lcp[r]):

12 continue

13 if (p1 == 0) or (p2 == 0) or

14 (T[p1 -1] != T[p2 -1]):

15 yield T[p1:p1+lcp[r]]
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Constructing LCP Arrays in Linear Time
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Inverting the Suffix Array

Observations

Any suffix array is a permutation of numbers from 0 to n − 1.

A suffix array can thus be inverted (in linear time):

Terminology

Suffix array: pos[r] is the start position of the suffix with lexicographical rank r.

Inverted suffix array: rank[p] is the lexicographical rank of the suffix
that starts at position p.

Linear-time inversion

for r in range(n): rank[pos[r]] = r

Note: rank is filled in random-access order.
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Example: Inverting the Suffix Array
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Linear Time LCP Construction: Kasai’s Algorithm

Input

Text T, suffix array pos, its inverse rank.

Idea

Compare each suffix, starting at text position p = 0, 1, . . . , n − 1,
to its respective predecessor (= lexicographically next smaller suffix)

Get predecessor by using suffix array (pos) and its inverse (rank):
For the suffix starting at p, find text position pos[rank[p]− 1].

Fill in LCP table in rank[p]-order (not from left to right or r -order!)

Moving from p to p + 1, we keep the computed common prefix,
without the first character, similarly to following a suffix link.
This is what saves us time.
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Linear Time LCP Construction: Kasai’s Algorithm

Input

Text T, suffix array pos, its inverse rank.

Idea

Compare each suffix, starting at text position p = 0, 1, . . . , n − 1,
to its respective predecessor (= lexicographically next smaller suffix)

Get predecessor by using suffix array (pos) and its inverse (rank):
For the suffix starting at p, find text position pos[rank[p]− 1].

Fill in LCP table in rank[p]-order (not from left to right or r -order!)

Moving from p to p + 1, we keep the computed common prefix,
without the first character, similarly to following a suffix link.
This is what saves us time.
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Example: Kasai’s Algorithm

r pos[r ] lcp[r ] T [pos[r ] :]
0 13 - $

1 12 i$

2 11 ii$

3 1 iississippii$

4 8 ippii$

5 5 issippii$

6 2 ississippii$

7 0 0 miississippii$

8 10 pii$

9 9 ppii$

10 7 sippii$

11 4 sissippii$

12 6 ssippii$

13 3 ssissippii$
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Example: Kasai’s Algorithm

r pos[r ] lcp[r ] T [pos[r ] :]
0 13 - $

1 12 i$

2 11 ii$

3 1 2 iississippii$

4 8 ippii$

5 5 issippii$

6 2 ississippii$

7 0 0 miississippii$

8 10 pii$

9 9 ppii$

10 7 sippii$

11 4 sissippii$

12 6 ssippii$

13 3 ssissippii$
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Example: Kasai’s Algorithm

r pos[r ] lcp[r ] T [pos[r ] :]
0 13 - $

1 12 i$

2 11 ii$

3 1 2 iississippii$

4 8 ippii$

5 5 issippii$

6 2 4 ississippii$

7 0 0 miississippii$

8 10 pii$

9 9 ppii$

10 7 sippii$

11 4 sissippii$

12 6 ssippii$

13 3 ssissippii$
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Code: Kasai’s Algorithm

1 def lcp(pos , T):

2 n = len(pos)

3 lcp = [-1] * (n+1)

4 rank = invert_sa(pos)

5 l = 0 # current common prefix length

6 for p in range(n-1):

7 r = rank[p]

8 # within length of T and chars agree?

9 while (pos[r-1] + l < len(T)) and

10 (p + l < len(T)) and

11 (T[p+l] == T[pos[r-1] + l]):

12 l += 1

13 lcp[r] = l

14 l = max(l-1, 0) # next suffix: lose first character

15 return lcp
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Why Is That Linear Time?

1 for p in range(n-1):

2 r = rank[p]

3 while (pos[r-1] + l < len(T)) and

4 (p + l < len(T)) and

5 (T[p+l] == T[pos[r-1] + l]):

6 l += 1

7 lcp[r] = l

8 l = max(l-1, 0) # next suffix: lose first character

Test in Line 5 can be performed at most 2n times:

Mismatch: while loop terminated: at most n − 1 times

Match: l is incremented in Line 6 and can decrease by at most 1 in Line 8

p increased in Line 1
→ p+l is larger when next reaching Line 5
→ can happen at most n times
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Summary

Today

Suffix arrays

LCP array

Enhanced suffix array can often replace suffix tree

Applications
Longest repeated substring
Shortest unique substring
Longest common substring
Maximal unique matches (MUMs)

Kasai’s algorithm: linear time LCP array construction
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Exam Questions

Define a suffix array.
Construct a suffix array for an example string.
Explain pattern search in suffix arrays.
Give the definition of the LCP array and explain it.
Construct the LCP array for a given string.
What is the advantage of an enhanced suffix array over a suffix tree?
Explain the following problems and how they can be solved using an enhanced
suffix array: longest repeated substring, shortest unique substring, longest
common substring, maximal unique matches.
Why and how can a suffix array be inverted?
Explain Kasai’s algorithm. What is its running time?
Apply Kasai’s algorithm to a given example.
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