

Exact Pattern Matching with Bit-Parallel Algorithms Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Previous Lecture

Exact Pattern Matching (for single patterns without index)

- Reminder: NFAs and DFAs
- DFA-based Knuth-Morris-Pratt algorithm (lps table)
- Bit-parallel simulation of NFA: Shift-And algorithm

Previous Lecture

Exact Pattern Matching (for single patterns without index)

- Reminder: NFAs and DFAs
- DFA-based Knuth-Morris-Pratt algorithm (lps table)
- Bit-parallel simulation of NFA: Shift-And algorithm

Today's Lecture

More on bit-parallel algorithms:

- How to get longer shifts than Horspool's algorithm?
 - \rightarrow BNDM algorithm (backward non-deterministic DAWG matching)
- Bit-parallel algorithms for more general patterns

A Substring-based Algorithm: BNDM

Reminder: Horspool Algorithm

Approach

- Compare characters from right to left in current window
- Shift window based on last character

Problem

Small alphabet (most likely) leads to short shifts (especially bad for long patterns).

Substring-based Shift Function

Ideas

- Read from right to left (like Horspool)
- Read on after mismatch to achieve longer shifts
- When substring of window is not substring of pattern, window can be shifted beyond that substring.
- Keeping track of suffixes of window that are prefixes of pattern can further increase shifts

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

Requirements / supported queries

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

- Add characters from right to left
- Is part read so far a substring of the pattern?
- Is part read so far a prefix of the pattern?

Non-Deterministic Suffix Automaton

Construction

- Construct pattern matching NFA of reverse pattern
- All states are start states

Usage

- Use Shift-And approach to maintain set of active states
- Any state active ⇔ substring occurs in pattern
- Accept state active ⇔ found prefix

BNDM Algorithm

BNDM Algorithm Outline

For each window:

- **1** Initialize suffix automaton (all states active)
- 2 Read window from right to left until no states active or full window read.
- 3 Keep track of longest window suffix that is pattern prefix
- **4** Shift window to align this suffix with pattern prefix

BNDM Algorithm: Code

```
def BNDM(P, T):
1
   masks, accept_state = compute_masks(P[::-1])
2
   n, m, pos = len(T), len(P), len(P)
3
   while pos <= n:</pre>
4
     A = (1 \ll m) - 1 \# initialize: all bits on
5
     j, lastsuffix = 1, 0
6
     while A != 0:
7
       A &= masks[T[pos-j]]  # update (AND)
8
       if A & accept_state != 0: # accept state?
9
         if j == m: # full pattern found?
10
         vield (pos - m, pos)
11
         break
12
        else: # found proper prefix
13
       lastsuffix = j # store suffix
14
       j += 1
15
       A = A \ll 1 # update (shift)
16
     pos += m - lastsuffix # shift window
17
```


Deterministic Counterpart: BDM

BDM Algorithm

- As before, we could turn NFA into DFA
 - \rightarrow deterministic suffix automaton (=DAWG)
- Either use subset construction (can be inefficient) or use complicated techniques (or keep using BNDM)

Names

- BDM = Backward deterministic DAWG Matching,
- BNDM = Backward Non-deterministic DAWG Matching,
- **DAWG** = Directed Acyclic Word Graph.

Bit-Parallel Algorithms for Extended Patterns

So far, patterns were simple strings, $P\in\Sigma^*.$

For several applications (e.g., transcription factor binding sites on DNA), it is necessary to consider patterns that allow

- different characters (some subset of Σ) at some positions,
- variable-length runs of arbitrary characters,
- optional characters at some positions.

So far, patterns were simple strings, $P\in\Sigma^*.$

For several applications (e.g., transcription factor binding sites on DNA), it is necessary to consider patterns that allow

- different characters (some subset of Σ) at some positions,
- variable-length runs of arbitrary characters,
- optional characters at some positions.

All of these patterns are subsets of **regular expressions**, which are recognized by DFAs.

So far, patterns were simple strings, $P\in\Sigma^*.$

For several applications (e.g., transcription factor binding sites on DNA), it is necessary to consider patterns that allow

- different characters (some subset of Σ) at some positions,
- variable-length runs of arbitrary characters,
- optional characters at some positions.

All of these patterns are subsets of **regular expressions**, which are recognized by DFAs.

However, specialized bit-parallel implementations for each pattern class are more efficient.

All of the above patterns can be recognized by variations of the Shift-And algorithm.

A generalized string over Σ is a string over 2^Σ \ { Ø },
 i.e., a string whose characters are non-empty subsets of Σ.

- A generalized string over Σ is a string over 2^Σ \ { ∅ }, i.e., a string whose characters are non-empty subsets of Σ.
- Example: Consider the set { Maier, Meier, Meier, Meyer }.
 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.
 Shorthand: M[ae][iy]er

- A generalized string over Σ is a string over 2^Σ \ { Ø },
 i.e., a string whose characters are non-empty subsets of Σ.
- Example: Consider the set { Maier, Meier, Meier, Meyer }.
 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.
 Shorthand: M[ae][iy]er
- Notation: Singleton sets are represented by their unique element. Larger sets are represented by square brackets: [ae] for { a,e }. We write # for $\Sigma \in 2^{\Sigma}$ ("any charachter").

- A generalized string over Σ is a string over 2^Σ \ { ∅ }, i.e., a string whose characters are non-empty subsets of Σ.
- Example: Consider the set { Maier, Meier, Meier, Meyer }.
 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.
 Shorthand: M[ae][iy]er
- Notation: Singleton sets are represented by their unique element. Larger sets are represented by square brackets: [ae] for { a,e }. We write # for Σ ∈ 2^Σ ("any charachter").
- In DNA sequences, the IUPAC code specifies a one-letter code for each subset: size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

The Shift-And Algorithm for Generalized Strings

- Recall the Shift-And algorithm with active state bits D: $D \leftarrow ((D \ll 1) \mid 1) \& mask(c)$
- The Shift-And algorithm can process generalized strings without modifications.
- The bit masks simply tell which characters are allowed at which position. It is no problem that more than one bit is set at some positions.

The Shift-And Algorithm for Generalized Strings

- Recall the Shift-And algorithm with active state bits D: $D \leftarrow ((D \ll 1) \mid 1) \& mask(c)$
- The Shift-And algorithm can process generalized strings without modifications.
- The bit masks simply tell which characters are allowed at which position.
 It is no problem that more than one bit is set at some positions.
- Example: $P = abba#b \text{ over } \Sigma = \{a, b\}.$

b#abba (reversed because of bit numbers)

mask[a] 011001 mask[b] 110110

The Shift-And Algorithm for Generalized Strings

- Recall the Shift-And algorithm with active state bits D: $D \leftarrow ((D \ll 1) \mid 1) \& mask(c)$
- The Shift-And algorithm can process generalized strings without modifications.
- The bit masks simply tell which characters are allowed at which position.
 It is no problem that more than one bit is set at some positions.
- Example: $P = abba#b \text{ over } \Sigma = \{a, b\}.$

b#abba (reversed because of bit numbers) mask[a] 011001 mask[b] 110110

(That was too easy, so let's try more complex patterns...)

Bounded-length Runs of Arbitrary Characters

- A run of arbitrary characters is a sequence of Σs (written as #s) in a generalized string.
 We allow variable run lengths, but with fixed lower and upper bounds.
- **Notation:** #(L, U) with lower bound L and upper bound U
- Example: P = bba#(1,3)a:

After bba, we have one to three arbitrary characters, followed by a.

Bounded-length Runs of Arbitrary Characters

- A run of arbitrary characters is a sequence of Σs (written as #s) in a generalized string.
 We allow variable run lengths, but with fixed lower and upper bounds.
- **Notation:** #(L, U) with lower bound L and upper bound U
- Example: P = bba#(1,3)a:

After bba, we have one to three arbitrary characters, followed by a.

- Three restrictions:
 - An element #(L, U) does not appear first or last in the pattern. (We could remove them without substantially changing the pattern.)
 - 2 No two such elements appear next to each other.

(No problem, just add them: $\#(L, U)\#(L', U') \cong \#(L + L', U + U')$.)

3 We require $1 \le L \le U$.

(Allowing L = 0 is technically more challenging!)

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ε-transitions, an extension of the standard NFA definition: ε-transitions happen instantaneously, without consuming a character.

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ε-transitions, an extension of the standard NFA definition: ε-transitions happen instantaneously, without consuming a character.
- The *e*-transitions allow us to skip the optional characters.
 For technical reasons, they exit the initial state of the run; the first #s in each run are optional.
 (One could do it differently, but that would be harder to implement!)

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ε-transitions, an extension of the standard NFA definition: ε-transitions happen instantaneously, without consuming a character.
- The *e*-transitions allow us to skip the optional characters.
 For technical reasons, they exit the initial state of the run; the first #s in each run are optional.
 (One could do it differently, but that would be harder to implement!)
- **Example:** *P* = bba#(1,3)a:

Bit-parallel Implementation

- We use the Shift-And algorithm on the maximal-length pattern as a basis. Then we additionally need to implement the *ϵ*-transitions.
- Masks are constructed as before (for #: 1-bits for each character).

Bit-parallel Implementation

- We use the Shift-And algorithm on the maximal-length pattern as a basis. Then we additionally need to implement the *ϵ*-transitions.
- Masks are constructed as before (for #: 1-bits for each character).
- Example: P = bba#(1,3)a with $\Sigma = \{a, b, c\}$:

a###abb mask[a] 1111100 mask[b] 0111011 mask[c] 0111000

Implementation of ϵ -Transitions

e-transitions are instantaneous:

Whenever a state with outgoing ϵ -transitions becomes active (1-bit), this is immediately propagated to the targets of the outgoing ϵ -edges; these are by construction adjacent to the source state.

Implementation of ϵ -Transitions

ϵ-transitions are instantaneous:

Whenever a state with outgoing ϵ -transitions becomes active (1-bit), this is immediately propagated to the targets of the outgoing ϵ -edges; these are by construction adjacent to the source state.

- The actual propagation of 1-bits will be achieved by subtraction (next slide).
- We use two additional bit masks:
 - Bit mask *I* marks states with outgoing *e*-transitions.
 - Bit mask F marks the state after the target of the last ϵ -transition of each run.

a###abb

- F 0100000
- 0000100

Propagation of Ones

- Let A be the bit mask of active states. Then A & I selects active I-states.
- Subtraction F (A & I) propagates 1-bits, zeroes F-bit

F	0100000		
A & I	0000100		
_	0011100		

Propagation of Ones

- Let A be the bit mask of active states. Then A & I selects active I-states.
- Subtraction F (A & I) propagates 1-bits, zeroes F-bit

F	0100000			
A & I	0000100			
_	0011100			

Problem: Inactive *I*-states keep corresponding *F*-bit set:

F	010000100000
A & I	00000000100
_	010000011100

Propagation of Ones (Continued)

Solution: Zero out *F*-bits by a bitwise and with the negation of *F*:

F	010000100000
A & I	00000000100
F - (A & I)	010000011100

Propagation of Ones (Continued)

Solution: Zero out *F*-bits by a bitwise and with the negation of *F*:

F	010000100000
A & I	00000000100
F – (A & I)	010000011100
\sim <i>F</i>	101111011111
$(F - (A \& I)) \& \sim F$	000000011100

Propagation of Ones (Continued)

Solution: Zero out *F*-bits by a bitwise and with the negation of *F*:

F	010000100000
A & I	00000000100
F – (A & I)	010000011100
\sim $m{ au}$	101111011111
$(F - (A \& I)) \& \sim F$	00000011100

- The resulting modified Shift-And algorithm is thus:
 - 1 Apply standard Shift-And update:

A = ((A << 1) | 1) & mask[c]

2 Propagate active *I*-states along ϵ -transitions:

 $A = A \mid ((F - (A \& I)) \& \sim F)$

Patterns with Optional Characters

- Another modification of the Shift-And algorithm allows optional characters.
- Notation: Write ? after the optional character.
- **Example:** The set {color, colour} becomes P = colou?r.
- Consecutive ϵ -transitions ("blocks") are allowed.

Patterns with Optional Characters

- Another modification of the Shift-And algorithm allows optional characters.
- Notation: Write ? after the optional character.
- **Example:** The set {color, colour} becomes P = colou?r.
- Consecutive ϵ -transitions ("blocks") are allowed.
- Larger example: P = ban?a?na?s and T = banabanns

$$\Sigma \xrightarrow{b} \xrightarrow{a} \xrightarrow{n} \xrightarrow{a} \xrightarrow{n} \xrightarrow{a} \xrightarrow{s} \xrightarrow{e}$$

Bit-Parallel Implementation of Optional Characters

Three bit masks:

I: block start; *O*: tagets of ϵ -transitions; *F*: block end

Note: actual bit patterns are reversed (bit numbering vs. state numbering)!

Bit-Parallel Implementation of Optional Characters

Three bit masks:

I: block start; *O*: tagets of ϵ -transitions; *F*: block end

Note: actual bit patterns are reversed (bit numbering vs. state numbering)!

Activity of any state within a block must be propagated to the block's end.

Bit-Parallel Implementation of Optional Characters (Continued)

 Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the *F*-bit.

Bit-Parallel Implementation of Optional Characters (Continued)

- Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the *F*-bit.
- Consider how 1-bit propagation via subtraction works:

	1101010000			110101 <mark>10</mark> 00
-	1		-	100
	1101001111	- –		1101010100

 Bits to the left (green) and to the right (black) are unchanged; only bits between the rightmost ones in the current block change (red).

Bit-Parallel Implementation of Optional Characters (Continued)

- Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the *F*-bit.
- Consider how 1-bit propagation via subtraction works:

	1101010000		110101 <mark>10</mark> 00
-	1	-	100
	1101001111		110101 <mark>01</mark> 00

- Bits to the left (green) and to the right (black) are unchanged; only bits between the rightmost ones in the current block change (red).
- We develop the machinery by example:
 - A .0010100. A .0010100.
 - I .0000001. A|F .1010100.
 - 0 .1111110. (A|F)-I .1010011.
 - .1000000. ((A|F)-I)=(A|F) .1111000.

O&((A|F)-I)=(A|F) .1111000.

A | (O&((A|F)-I)=(A|F)) .1111100.

Algorithmic Bioinformatics

>> .1111100.

F

Bit-Parallel Implementation of Optional Characters (Conclusion)

- Note: Bitwise equality X = Y can be implemented as $\sim (X \oplus Y)$.
- Full implementation:
 - Create masks for all characters; treat optional characters as regular characters.
 - 2 Standard Shift-And update of active states A:

A = ((A << 1) | 1) & mask[c]

3 Propagate active states over optional characters:

Summary I

Topic

Bit-parallel methods for exact pattern matching of single patterns without text indexing

Properties of bit-parallel algorithms

- Typically only applicable if an "almost linear" NFA recognizes the pattern, and if this NFA has at most 64 (register width) states
- Shift-And approach is simple and very flexible, extends to general patterns; running time is always O(n) for constant |P| < 64.

BNDM approach is also simple and flexible; may pathologically use O(mn) time even for constant m = |P| < 64, but has best-case running time of O(m + n/m).

Summary II

Topic

Exact pattern matching of single patterns without text indexing

Strengths of different algorithms

- **Shift-And:** simple, applicable if |P| < 64
- B(N)DM: for |P| < 64; best case of O(m + n/m); long shifts even for small alphabet + long pattern
- Horspool: best case of O(m + n/m) for large alphabet + long pattern
- **Knuth-Morris-Pratt:** best asymptotic time of O(m + n)
- Automata theory was actually very useful
- Next topic: index structures (i.e. preprocessing the text)

Exam Questions

- Explain the idea of bit-parallel simulation of NFAs.
- Explain the suffix automaton and the BNDM algorithm.
- What are the advantages of BNDM over Horspool's algorithm?
- What are the advantages of BNDM over the Shift-And algorithm?
- What is a generalized string?
- How does the Shift-And algorithm change when you allow generalized strings?
- Why would you want to use the Shift-And algorithm for runs with bounded length, when the algorithms for optional characters is more general (#(3,5) = #?#?###)?
- How do you implement bit-parallel propagation of an active state?

