
Exact Pattern Matching with Automata
Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Recall the Pattern Matching Problem

alicewasbeginningtogetverytiredofsittingbyhersisteron

thebankandofhavingnothingtodoonceortwiceshehadpeepedi

ntothebookhersisterwasreadingbutithadnopicturesorconv

ersationsinitandwhatistheuseofabookthoughtalicewithou

tpicturesorconversation

Task

Find all occurrences of a given string in another (longer) string.

Goals

As fast as possible (running time)

As easily as possible (algorithm/implementation)

Algorithmic Bioinformatics 2

Recall the näıve algorithm

i=0

...

i=1
i=2 ...

Pattern P
Text T

0 1 n-1... ...

Comparisons:

Ideas

Can we shift window by more than one character?
→ Horspool algorithm (and others)

We “touch” the same characters in T multiple times.
Can we “reuse” information from preceeding comparisons?
→ Automata based algorithms (now)

Algorithmic Bioinformatics 3

Recall the näıve algorithm

i=0

...

i=1
i=2 ...

Pattern P
Text T

0 1 n-1... ...

Comparisons:

Ideas

Can we shift window by more than one character?
→ Horspool algorithm (and others)

We “touch” the same characters in T multiple times.
Can we “reuse” information from preceeding comparisons?
→ Automata based algorithms (now)

Algorithmic Bioinformatics 3

Finite Automata Revisited

Algorithmic Bioinformatics 4

Deterministic Finite Automata (DFA)

Definition (DFA)

A DFA is a tuple (Q, q0,F ,Σ, δ), where

Q is a finite set of states,

q0 ∈ Q is a start state,

F ⊂ Q is a set of accepting states,

Σ is an input alphabet, and

δ : Q × Σ→ Q is a transition function.

Algorithmic Bioinformatics 5

DFA – Example

Q is a finite set of states,

q0 ∈ Q is a start state,

F ⊂ Q is a set of accepting states,

Σ is an input alphabet, and

δ : Q × Σ→ Q is a transition function.

Accept the strings over {a, b, c}, where 4 divides the sum of the number of as and bs:

Non-Deterministic Finite Automata (NFA)

Definition (NFA)

An NFA is a tuple (Q,Q0,F ,Σ,∆), where

Q is a finite set of states,

Q0 ⊂ Q is a set of start states,

F ⊂ Q is a set of accepting states,

Σ is an input alphabet, and

∆: Q × Σ→ 2Q is a (non-deterministic) transition function.

Algorithmic Bioinformatics 7

NFA – Example

Q is a finite set of states,

Q0 ⊂ Q is a set of start states,

F ⊂ Q is a set of accepting states,

Σ is an input alphabet, and

∆: Q × Σ→ 2Q is a (non-deterministic) transition function.

Accept the strings over {a, b, c}, where 3 or 4 divides the sum of the number of as and bs:

Extending the Transition Function

Original NFA transition function: ∆: Q × Σ→ 2Q

For notational convenience, we make the following definitions.

Extension to sets of states

∆(A, c) :=
⋃

q∈A ∆(q, c) for a set of states A and c ∈ Σ.

Extension to strings

∆(A, ε) := A, where ε is the empty string, and

∆(A, xc) := ∆(∆(A, x), c), where x ∈ Σ∗ and c ∈ Σ.

Algorithmic Bioinformatics 9

NFAs for Pattern Matching

Algorithmic Bioinformatics 10

NFA to Solve the Pattern Matching Problem

Goal

For given pattern P ∈ Σ∗, construct NFA that recognizes all strings Σ∗P.

Approach

“Linear chain” of states

Start state remains always active

Example: Σ = {A, B, C} and P = ABABC

A B A B C
S A

A,
B,
C

Algorithmic Bioinformatics 11

NFA to Solve the Pattern Matching Problem

Goal

For given pattern P ∈ Σ∗, construct NFA that recognizes all strings Σ∗P.

Approach

“Linear chain” of states

Start state remains always active

Example: Σ = {A, B, C} and P = ABABC

A B A B C
S A

A,
B,
C

Algorithmic Bioinformatics 11

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Using our NFA

Σ = {A, B, C} and P = ABABC

A B A B C
S A

ABABABCCACABAC...
A,
B,
C
0 1 2 3 4

Things left to do

Formally define this automaton,

Give efficient implementation.

Algorithmic Bioinformatics 12

Pattern Matching NFA (Formal)

A B A B C
S A

A,
B,
C

-1 0 1 2 3 4

state set Q = {−1, 0, . . . ,m − 1}, where m = |P|
start states Q0 = {−1}
accepting states F = {m − 1}
transition function ∆:

For q = −1: ∆(−1, c) =

{
{−1, 0} if c = P[0],

{−1} otherwise.

For q ∈ {0, . . . ,m − 2}: ∆(q, c) =

{
{q + 1} if c = P[q + 1],

∅ otherwise.

For q = m − 1: ∆(m − 1, c) = ∅

Algorithmic Bioinformatics 13

Correctness

Lemma: NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the patterns prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.
Proof: Follows directly from the NFA definition.

Theorem: Correctness of Pattern Matching NFA

The pattern matching NFA for pattern P accepts exactly the language Σ∗P.
Proof: Follows immediately from the above lemma.

Algorithmic Bioinformatics 14

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 1 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 1 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 1 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 1 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 1

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 1

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 1 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 1 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

1 0 1 0 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 1 0 1 0

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Efficient Implementation: The Shift-And Algorithm

A B A B C
S A

ABABABCCACABAC...

0 0 0 0 1

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

D:

mask(A):
mask(B):
mask(C):

A,
B,
C

0 1 2 3 4

D ←
(
(D � 1) | 1

)
& mask(c)

Algorithmic Bioinformatics 15

Code for Shift-And Algorithm

1 def ShiftAnd(P, T):

2 m = len(P)

3 masks = dict() # empty dictionary

4 bit = 1

5 for c in P:

6 if c not in masks: masks[c] = 0

7 masks[c] = masks[c] | bit

8 bit = bit * 2

9 accept_state = bit // 2

10 D = 0 # bit -mask of active states

11 i = 0

12 for c in T:

13 D = ((D << 1) | 1) & masks[c]

14 if (D & accept_state) != 0:

15 yield i

16 i += 1

Algorithmic Bioinformatics 16

Running time of Shift-And Algorithm

m: Pattern length

n: Text length

w : Machine register width

Running time

If m < w , then the shift-and algorithm runs in O(m + n) time.
Generally (i.e. when m/w is not constant), it takes O(m + nm/w) time.

Conclusions

Fast when pattern fits into one machine word

Running time independent of how similar text and pattern are.

Running time independent of alphabet size.

Algorithmic Bioinformatics 17

DFA-based Pattern Matching

Algorithmic Bioinformatics 18

Reminder: How to Turn an NFA into a DFA

Definition: equivalence of automata

Two automata are equivalent if they accept the same sets of words (languages).

NFA vs. DFA

NFA: Many states can be active at the same time

DFA: Only one state active at any given time

Subset construction (NFA → DFA)

Idea: create one DFA state for every subset of NFA states

We can omit states that are unreachable

Algorithmic Bioinformatics 19

Example: Subset Construction (NFA → DFA)

Accept the strings over {a, b, c}, where 3 or 4 divides the sum of the number of as and bs:

Subset Construction: How Many DFA States?

In general

Subset construction leads to exponential blow-up in the number of states:
|Q| NFA states turn into 2|Q| DFA states.

In practice

Blow-up often does not happen (many states are unreachable).

For our pattern matching automata

DFA always has the same number of states as NFA.

Algorithmic Bioinformatics 21

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Reachable State Sets in NFA

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

Lemma (from previous lecture): NFA state set invariant

Let A ⊂ Q be a set of active states of our NFA. Then, q ∈ A \ {−1} iff the last q + 1
read characters equal the pattern’s prefix P[. . . q]. In particular, state |P| − 1 is active
iff the last |P| characters equal the full pattern.

Lemma

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Algorithmic Bioinformatics 22

Consequences of State Set Lemma

Lemma (from previous slide)

Let A be the set of active states of a pattern matching NFA. Now, let a∗ := maxA.
Then, A is completely determined by a∗.

Consequences

For each possible a∗ from −1 to m − 1, there is exactly one reachable set of active
states.
⇒ there are exactly m + 1 possible sets of active states.
⇒ there is an equivalent DFA with m + 1 states.

DFA state set

We use same state set Q = {−1, . . . ,m − 1} for DFAs.

Being in state q ∈ Q in DFA ⇐⇒ NFA has active states set A with maxA = q.

Algorithmic Bioinformatics 23

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based vs. NFA-based Pattern Matching

A

A B A B C
S A

ABABABCCACABAC...

A,
B,
C

0 1 2 3 4

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

NFA:

DFA:

Algorithmic Bioinformatics 24

DFA-based Pattern Matching: Overview

Algorithm overview

1 Construct pattern matching NFA in O(m) time.

2 Construct DFA by computing the set of active states for every possible a∗

in O(m2) time.

3 Use DFA for searching text in O(n) time.

Resulting total time: O(m2 + n)

Algorithmic Bioinformatics 25

DFA-based Pattern Matching: Overview

Algorithm overview

1 Construct pattern matching NFA in O(m) time.

2 Construct DFA by computing the set of active states for every possible a∗

in O(m2) time.

3 Use DFA for searching text in O(n) time.

Resulting total time: O(m2 + n)

Algorithmic Bioinformatics 25

DFA-based Pattern Matching: Code

1 def DFA_with_delta(m, delta , T):

2 q = -1

3 for i in range(len(T)):

4 q = delta(q, T[i])

5 if q == m - 1:

6 yield (i-m+1, i+1)

7

8 def DFA(P, T):

9 delta = DFA_delta_table(P)

10 return DFA_with_delta(len(P), delta , T)

Summary

Total time: O(m2 + n)

How do we get to O(m + n)?

Algorithmic Bioinformatics 26

DFA-based Pattern Matching: Code

1 def DFA_with_delta(m, delta , T):

2 q = -1

3 for i in range(len(T)):

4 q = delta(q, T[i])

5 if q == m - 1:

6 yield (i-m+1, i+1)

7

8 def DFA(P, T):

9 delta = DFA_delta_table(P)

10 return DFA_with_delta(len(P), delta , T)

Summary

Total time: O(m2 + n)

How do we get to O(m + n)?

Algorithmic Bioinformatics 26

Knuth-Morris-Pratt Algorithm

Algorithmic Bioinformatics 27

How to Compute the DFA Transition Function?

DFA transition function δ

Matching character: just move right (easy)

Non-matching character: move left (but how far?)

A

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

Algorithmic Bioinformatics 28

Example: Construction of DFA Transition Table (ABABC)

A

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

Using the lps-Table to Generate δ

Given: state q and character c

Approach to compute δ(q, c)

If c = P[q + 1], then q 7→ q + 1

If not, try again for q′, where q′ is “the next NFA state that would be active”
(if this was an NFA and not a DFA)

The lps-function: lps : {0, . . . ,m − 1} → N
Recall: state q corresponds to prefix P[. . . q] of length q + 1

lps(q) is the length of the longest prefix of P that is a true suffix of P[. . . q].

Then, we can get q′ through q′ = lps(q)− 1.

Algorithmic Bioinformatics 30

Example: lps-Table

A

A B A B C
S A

A
C A

A

B,C

B,
C

C
B

B,C

Using lps to Compute δ

1 def DFA_delta_lps(q, c, P, lps):

2 """ state q, character c, pattern P, lps function/table """

3 m = len(P)

4 while q == m-1 or (P[q+1] != c and q > -1):

5 q = lps[q] - 1

6 if P[q+1] == c: q += 1

7 return q

Running time analysis

Still takes O(m) time in the worst case (while loop in line 4),
leading to O(mn) time for pattern matching over the whole text.

But m iterations cannot happen for all n text characters!
Amortized analysis: How many times can lines 4, 5 be executed in total?

Line 5 decreases q, but q cannot drop below −1.
Only line 6 can ever increase q, at most once per iteration.

Algorithmic Bioinformatics 32

Using lps to Compute δ

1 def DFA_delta_lps(q, c, P, lps):

2 """ state q, character c, pattern P, lps function/table """

3 m = len(P)

4 while q == m-1 or (P[q+1] != c and q > -1):

5 q = lps[q] - 1

6 if P[q+1] == c: q += 1

7 return q

Running time analysis

Still takes O(m) time in the worst case (while loop in line 4),
leading to O(mn) time for pattern matching over the whole text.

But m iterations cannot happen for all n text characters!
Amortized analysis: How many times can lines 4, 5 be executed in total?

Line 5 decreases q, but q cannot drop below −1.
Only line 6 can ever increase q, at most once per iteration.

Algorithmic Bioinformatics 32

Using lps to Compute δ

1 def DFA_delta_lps(q, c, P, lps):

2 """ state q, character c, pattern P, lps function/table """

3 m = len(P)

4 while q == m-1 or (P[q+1] != c and q > -1):

5 q = lps[q] - 1

6 if P[q+1] == c: q += 1

7 return q

Running time analysis

Still takes O(m) time in the worst case (while loop in line 4),
leading to O(mn) time for pattern matching over the whole text.

But m iterations cannot happen for all n text characters!
Amortized analysis: How many times can lines 4, 5 be executed in total?

Line 5 decreases q, but q cannot drop below −1.
Only line 6 can ever increase q, at most once per iteration.

Algorithmic Bioinformatics 32

Knuth-Morris-Pratt Algorithm

1 def DFA_delta_lps(q, c, P, lps):

2 """ state q, character c, pattern P, lps function/table """

3 m = len(P)

4 while q == m-1 or (P[q+1] != c and q > -1):

5 q = lps[q] - 1

6 if P[q+1] == c: q += 1

7 return q

1 def KMP(P, T):

2 lps = compute_lps(P)

3 m, q = len(P), -1

4 for i in range(len(T)):

5 q = DFA_delta_lps(q, T[i], P, lps)

6 if q == m - 1: yield i

Running time: O(n + m) since DFA delta lps takes amortized constant time.

Algorithmic Bioinformatics 33

Computing the lps-Table

1 def compute_lps(P):

2 m = len(P)

3 q = -1

4 lps = [0] * m # lps[0] = 0 is correct

5 for i in range(1, m):

6 while q > -1 and P[q+1] != P[i]:

7 q = lps[q] - 1

8 if P[q+1] == P[i]: q += 1

9 # Invariant (Q) holds here

10 lps[i] = q+1

11 return lps

Invariant (Q): q = max
{
k < i : P[i − k . . . i] = P[0 . . . k]

}
Algorithmic Bioinformatics 34

Summary: Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt Algorithm

lps-function gives a succinct representation of δ.

Using lps to evaluate δ takes amortized constant time.

Constructing lps-table works similar and takes O(m) time.

KMP algorithm has optimal running time of O(m + n).

Historical Note

In the original paper (1977), the algorithm is not presented in terms of DFAs.
However, the authors point out that “it was still legitimate to conclude that automata
theory had actually been helpful in this practical problem.”

Algorithmic Bioinformatics 35

Summary

Today’s topic: Exact Pattern Matching (for single patterns without index)

Reminder: NFAs and DFAs

Avoid reading text characters more than once
→ NFA-based pattern matching

Efficient bit-parallel implementation of pattern matching NFA
→ Shift-And algorithm

Best asymptotic worst-case time:
→ DFA-based algorithms

Compact representation of DFA transitions:
→ Knuth-Morris-Pratt algorithm

Algorithmic Bioinformatics 36

Possible exam questions

How can finite automata be used to solve the pattern matching problem?

What is the difference between NFAs and DFAs?

What running times can be achieved in NFA/DFA based pattern matching?

How is the set of active NFA states related to the read text so far?

Give the formal definition of a pattern matching NFA and explain it.

Explain the Shift-And algorithm.

Explain the subset construction (from NFA to DFA).

Why do the special NFAs studied here have the same number of states as the
corresponding DFAs?

Explain the Knuth-Morris-Pratt (KMP) algorithm and its relation to DFAs.

How can one construct the lps function and in what time?

What is the running time of KMP (worst case / best case)?

Algorithmic Bioinformatics 37

