

Exact Pattern Matching: First Ideas Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Pattern Matching Problem

alicewasbeginningtogetverytiredofsittingbyhersisteron thebankandofhavingnothingtodoonceortwiceshehadpeepedi ntothebookhersisterwasreadingbutithadnopicturesorconv ersationsinitandwhatistheuseofabookthoughtalicewithou tpicturesorconversation

Task

Find all occurrences of a given string in another (longer) string.

Goals

- As fast as possible (running time)
- As easily as possible (algorithm/implementation)

Relevance and Applications of String Matching

General Applications

- Web search
- Full-text searches in scientific articles
- Edit-replace in source code ...

Applications in Computational Biology

- Searching for sequence features like binding sites
- Searching sequence data bases ("blasting")
- Building overlap graphs for de novo assembly
- Mapping next-generation sequencing reads to reference genome
- ... many many more

Notation

```
 \begin{split} & \Sigma \\ & w \in \Sigma^k \\ & w \in \Sigma^* = \bigcup_{k=0}^\infty \Sigma^k \\ & w[i] \\ & w[i \dots j] \end{split}
```

alphabet = finite set of characters (letters) string (word, k-gram, k-mer, text) of length k word of arbitrary finite length character at index i in word w substring from i to j (inclusively)

Example

$\Sigma = \{\texttt{A},\texttt{B},\texttt{C}\}$	w[1] = B
w = A B C C B A A B	w[5] = A
Indices: 01234567	$w[1 \dots 4] = BCCB$

Note: Indexing starts at zero (0) !

Pattern Matching Problem

Given

Finite alphabet Σ , text $T \in \Sigma^n$, pattern $P \in \Sigma^m$; usually $m \ll n$. (The pattern is a simple string for now.)

Sought (three variants)

- **1** Decision: Is P a substring of T? \rightsquigarrow Is there an $i \in \mathbb{N}$ such that $P = T[i \dots i + m - 1]$?
- 2 Counting: How often does P occur in T? \rightsquigarrow Let $M := \{i \in \mathbb{N} \mid P = T[i \dots i + m - 1]\}$. Report |M|.
- 3 Enumeration: At what positions does P occur in T? → Report the full set M of match positions.

Problem Variants I

Exact Pattern Matching (what we do next)

Given a pattern $P \in \Sigma^m$ and a text $T \in \Sigma^n$, find indices *i* such that $P = T[i \dots i + m - 1]$.

Problem Variants I

Exact Pattern Matching (what we do next)

Given a pattern $P \in \Sigma^m$ and a text $T \in \Sigma^n$, find indices *i* such that $P = T[i \dots i + m - 1]$.

Approximative Pattern Matching (later in this course)

Find all **approximate** occurrences of P in T, i.e. for a distance measure d, find indices i, j such that $d(P, T[i \dots j]) \leq k$.

Example: Hamming distance

Hamming distance: number of different positions (for strings of the same length) P = ABCDE, T = XXXABDDEYYYd(P, T[3...7]) = 1

Problem Variants II

Pattern $P \in \Sigma^m$ and text $T \in \Sigma^n$

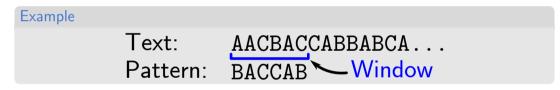
Searching without index (what we do next)

- Preprocess pattern in O(m)
- Search text for pattern in O(n)
- Search for k different patterns in the same text: O(k(m+n)) or O(km+n)

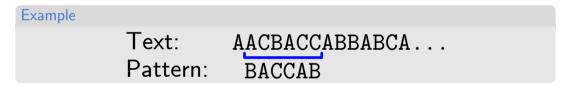
Searching with index (what we do after that)

- Preprocess text and build index data structure in O(n)
- Search for pattern using index in O(m)
- Search for k different patterns in the same text: O(n + km)
- Index structures are useful for many tasks beyond searching

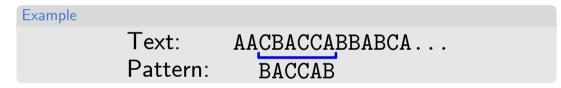
- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right



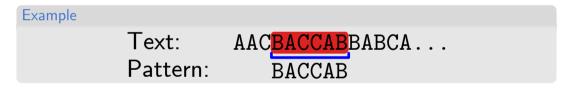
- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right



- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right

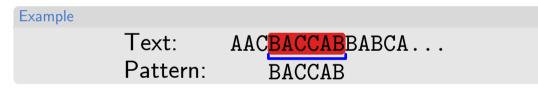


- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right



Approach: sliding windows

- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right



Naive Algorithm

- Shift window by one position in each iteration
- Compare pattern to window content from left to right

Code: The (few) things you need to know about Python

Pseudocode vs. Python

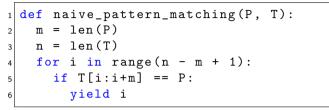
- (Good) Python code is as readable as pseudo code, even if you don't know Python
- Allows you (and us) to try/test algorithms immediately

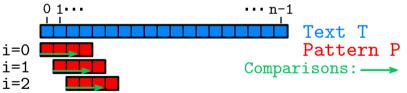
Code: The (few) things you need to know about Python

Pseudocode vs. Python

- (Good) Python code is as readable as pseudo code, even if you don't know Python
- Allows you (and us) to try/test algorithms immediately
- "for i in range(5,n):": iterate over $i \in \{5, \dots, n-1\}$
- "for i in range(n):": iterate over $i \in \{0,\ldots,n-1\}$
- "len(x)": length/size of x, when x is string, list, set, etc. (any container)
- "T[i:j]": substring $T[i \dots j 1]$, also applies to lists
- "def foo(x,y)": define a function named foo
- "yield x": like return, but execution is continued later during iteration
- "dict()": dictionary (hash table) storing key-value pairs
- "//": integer division

Naive Pattern Matching Algorithm

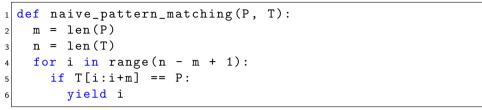


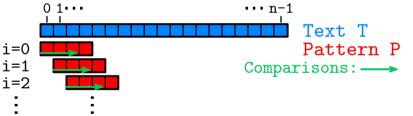


Running time: ?

Algorithmic Bioinformatics

Naive Pattern Matching Algorithm

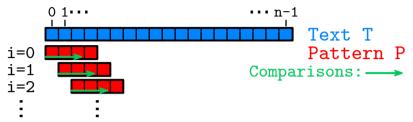




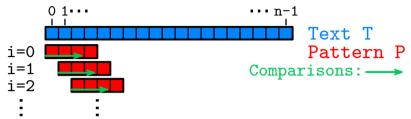
Running time: O(mn) worst case. $O(E_m \cdot n)$ on average, but what is E_m ?

Algorithmic Bioinformatics

What can we do better?



What can we do better?



Ideas

- **1** Perhaps O(mn) is pessimistic, and $O(E_m \cdot n)$ has a small constant E_m ?
- 2 We "touch" the same characters in T multiple times.
 Can we "reuse" information from preceeding comparisons?
 → Automata-based algorithms (next lecture)
- 3 Can we shift window by more than one character? \rightarrow Horspool algorithm (and others; next topic)

Algorithmic Bioinformatics

Average-Case Analysis of the Naïve Algorithm

Theorem (Expected Running Time)

Let Σ be an alphabet with $|\Sigma| \ge 2$. Randomly (i.i.d.) choose a pattern of length m and a text of length n over Σ . Then the worst-case running time of the naïve algorithm is O(mn), but the expected running time is $O(E_m \cdot n) = O(n)$ with a small constant $E_m < 2$.

Average-Case Analysis of the Naïve Algorithm

Theorem (Expected Running Time)

Let Σ be an alphabet with $|\Sigma| \ge 2$. Randomly (i.i.d.) choose a pattern of length m and a text of length n over Σ . Then the worst-case running time of the naïve algorithm is O(mn), but the expected running time is $O(E_m \cdot n) = O(n)$ with a small constant $E_m < 2$.

We compute E_m : The probability p that two random characters agree is

$$ho:=rac{|\Sigma|}{|\Sigma|^2}=rac{1}{|\Sigma|}$$

(If different characters a have different probabilities p_a each, the expression for p is more complicated, but the rest of the proof remains unchanged.)

The probability that all m pattern characters match with the text window is p^m. This needs m comparisons (and results in a match, but this is irrelevant).

- The probability that all m pattern characters match with the text window is p^m. This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).

- The probability that all m pattern characters match with the text window is p^m. This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m \, p^m + \sum_{j=1}^m j \, p^{j-1} \, (1-p)$$

- The probability that all m pattern characters match with the text window is p^m. This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m p^m + \sum_{j=1}^m j p^{j-1} (1-p)$$

For any *m*, the value of E_m is bounded by $E_\infty := \lim_{m \to \infty} E_m$:

$$E_m < E_\infty = (1-p) \sum_{j=1}^\infty j \, p^{j-1} \, .$$

Algorithmic Bioinformatics

- The probability that all m pattern characters match with the text window is p^m. This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m p^m + \sum_{j=1}^m j p^{j-1} (1-p)$$

For any *m*, the value of E_m is bounded by $E_\infty := \lim_{m \to \infty} E_m$:

$$E_m < E_\infty = (1-p) \sum_{j=1}^\infty j \, p^{j-1} \, .$$

• It remains to evaluate the series E_{∞} (by first-year maths).

Algorithmic Bioinformatics

So far: For any alphabet Σ and any $m \geq 1$, we have

$$E_m < E_\infty = (1-p) \sum_{j=1}^\infty j \, p^{j-1} = (1-p) \sum_{j=0}^\infty j \, p^{j-1}$$

• You can use a computer algebra system to evaluate this, or...

• So far: For any alphabet Σ and any $m \geq 1$, we have

$$E_m < E_\infty = (1-p) \sum_{j=1}^\infty j \, p^{j-1} = (1-p) \sum_{j=0}^\infty j \, p^{j-1}$$

You can use a computer algebra system to evaluate this, or...

Consider E_∞ = E_∞(p) as a function of p (recall p = 1/|Σ| < 1 for |Σ| ≥ 2).
 The term j p^{j-1} is the derivative of p^j.

So far: For any alphabet Σ and any $m \geq 1$, we have

$$E_m < E_\infty = (1-p) \sum_{j=1}^\infty j \, p^{j-1} = (1-p) \sum_{j=0}^\infty j \, p^{j-1}$$

You can use a computer algebra system to evaluate this, or...

- Consider E_∞ = E_∞(p) as a function of p (recall p = 1/|Σ| < 1 for |Σ| ≥ 2).
 The term j p^{j-1} is the derivative of p^j.
- Because $\sum_{j=0}^{\infty} p^j = 1/(1-p)$ (geometric series), we have

$$\sum_{j=0}^{\infty} j p^{j} = \frac{d}{dp} \frac{1}{1-p} = \frac{1}{(1-p)^{2}},$$
$$E_{\infty} = \frac{1-p}{(1-p)^{2}} = \frac{1}{1-p} = \frac{|\Sigma|}{|\Sigma|-1} \le 2.$$

Algorithmic Bioinformatics

• In summary, for all $m\geq 1$ and all $\Sigma\geq 2$,

$$E_m < E_\infty = rac{1}{1-p} = rac{|\Sigma|}{|\Sigma|-1} \le 2$$
.

• For $|\Sigma| \to \infty$ we have $E_m \searrow 1$.

• The expected running time on i.i.d. random texts is thus $O(n \cdot E_m) = O(n)$ with a small constant $E_m \leq 2$.

Horspool Algorithm

Question

When and how can the window be shifted by more than one position?

Ideas

- Compare pattern right-to-left to text window.
- \blacksquare Characters not occurring in pattern \rightarrow large shift

(Extreme) Example

Question

When and how can the window be shifted by more than one position?

Ideas

- Compare pattern right-to-left to text window.
- \blacksquare Characters not occurring in pattern \rightarrow large shift

(Extreme) Example

Question

When and how can the window be shifted by more than one position?

Ideas

- Compare pattern right-to-left to text window.
- \blacksquare Characters not occurring in pattern \rightarrow large shift

(Extreme) Example

Question

When and how can the window be shifted by more than one position?

Ideas

- Compare pattern right-to-left to text window.
- \blacksquare Characters not occurring in pattern \rightarrow large shift

(Extreme) Example

Question

When and how can the window be shifted by more than one position?

Ideas

- Compare pattern right-to-left to text window.
- \blacksquare Characters not occurring in pattern \rightarrow large shift

(Extreme) Example

Best case time: O(n/m)

Algorithmic Bioinformatics

Horspool Algorithm

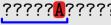
Approach

- Window-based pattern matching algorithm
- Shift determined by last character in window

P = BAAAAB and $\Sigma = \{A, B, C\}$

Question: How far can we shift the window without missing pattern occurrences?

Text:





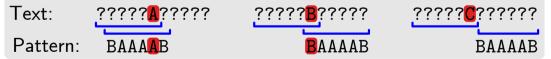
Horspool Algorithm

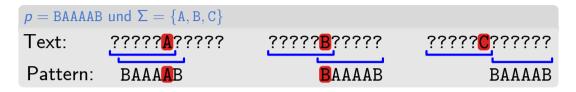
Approach

- Window-based pattern matching algorithm
- Shift determined by last character in window

$P = \texttt{BAAAAB} \texttt{ and } \Sigma = \{\texttt{A},\texttt{B},\texttt{C}\}$

Question: How far can we shift the window without missing pattern occurrences?





```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```



```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```



```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

```
shifts:
A B C
6 6 6
```



```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

shifts:
$$i = 0$$
 $p = BAAAAB$
A B C
6 5 6


```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

shifts: i = 1 p = BAAAABA B C 4 5 6


```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

```
shifts: i = 2 p = BAAAAB
A B C
3 5 6
```



```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

```
shifts: i = 3 p = BAAAAB
A B C
2 5 6
```



```
1 def horspool_preprocessing(sigma, P):
2 shifts = dict()
3 for c in sigma:
4 shifts[c] = len(P)
5 for i in range(len(P)-1):
6 shifts[P[i]] = len(P) - i - 1
7 return shifts
```

```
shifts: i = 4 p = BAAAAB
A B C
1 5 6
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```

```
Text:ABBCACBABAAABBAAABBAAABCAC...shifts:<br/>A B C<br/>1 5 6
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```

```
Text:ABBCACBABAABBAABBBAAAABAABCAC...shifts:<br/>A B C<br/>1 5 6
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```

```
Text:ABBCACBABAABBAAAABBAABCAC...shifts:<br/>A B C<br/>1 5 6
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```

```
Text:ABBCACBABAAB<br/>BAAAABBAAAAB<br/>BAAAABshifts:<br/>A B C<br/>1 5 6
```



```
1 def horspool_matching(sigma, P, T):
2 shifts = horspool_preprocessing(sigma, P)
3 i = len(P) - 1
4 while i < len(T):
5 if T[i-len(P)+1:i+1] == P:
6 yield i
7 i += shifts[T[i]]
```

Text:ABBCACBABAAB
BAAAABBAAAAB
BAAAABshifts:
A B C
1 5 6

Property of the Horspool Algorithm

Fast for large alphabets and long patterns

Summary

- Today's topic: Exact Pattern Matching (for single patterns without index)
- Naïve algorithm and analysis
- Idea to improve on naive algorithm:
 Shift window by more than one character
 - \rightarrow Horspool algorithm

Possible exam questions

- State the pattern matching problem and known variants of it.
- What is the worst-case and average-case running time of the naïve algorithm?
- The naïve algorithm is fast on average; why bother with more complex algorithms?
- Explain Horspool's algorithm.
- Construct the Horspool shift table for a short pattern.
- For which pattern properties is Horspool's algorithm fast or slow?
- How may Horspool's algorithm be modified to be fast on long patterns with small alphabet?

